精英家教网 > 高中数学 > 题目详情
在数列{an}中,若对任意的n∈N*,都有
an+2
an+1
-
an+1
an
=t
(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足an=
2n-1
n2
,则数列{an}是比等差数列,且比公差t=
1
2

③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是(  )
A.①②B.②③C.③④D.①③
相关习题

科目:高中数学 来源:东城区二模 题型:填空题

在数列{an}中,若对任意的n∈N*,都有
an+2
an+1
-
an+1
an
=t(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足an=
2n-1
n2
,则数列{an}是比等差数列,且比公差t=
1
2

③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是______.

查看答案和解析>>

科目:高中数学 来源:东城区二模 题型:单选题

在数列{an}中,若对任意的n∈N*,都有
an+2
an+1
-
an+1
an
=t
(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足an=
2n-1
n2
,则数列{an}是比等差数列,且比公差t=
1
2

③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是(  )
A.①②B.②③C.③④D.①③

查看答案和解析>>

科目:高中数学 来源:2013年北京市东城区高考数学二模试卷(文科)(解析版) 题型:选择题

在数列{an}中,若对任意的n∈N*,都有(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足,则数列{an}是比等差数列,且比公差
③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是( )
A.①②
B.②③
C.③④
D.①③

查看答案和解析>>

科目:高中数学 来源:2013年北京市东城区高考数学二模试卷(理科)(解析版) 题型:填空题

在数列{an}中,若对任意的n∈N*,都有-=t(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足an=,则数列{an}是比等差数列,且比公差t=
③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是   

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)在数列{an}中,若对任意的n∈N*,都有
an+2
an+1
-
an+1
an
=t(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足an=
2n-1
n2
,则数列{an}是比等差数列,且比公差t=
1
2

③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)在数列{an}中,若对任意的n∈N*,都有
an+2
an+1
-
an+1
an
=t
(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足an=
2n-1
n2
,则数列{an}是比等差数列,且比公差t=
1
2

③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,Sn是数列{an}的前n项和,a1=1,当n≥2时,Sn2=an(Sn-
1
2
)

(1)求证{
1
Sn
}
为等差数列,并求an
(2)设bn=
Sn
2n+1
,求数列{bn}的前n项和Tn
(3)是否存在自然数m,使得对任意自然数n∈N*,都有Tn
1
4
(m-8)
成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,从第二项起,每一项与它前一项的差依次组成首项为2且公比为q(q>0)的等比数列.
(1)当q=1时,证明数列{an}是等差数列;
(2)若q=2,求数列{nan}的前n项和Sn
(3)令bn=
an+1an
,若对任意n∈N*,都有bn+1<bn,求q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列an中,a1=0,a2=2,an+1+an-1=2(an+1),n≥2
(1)求数列an的通项公式
(2)若不等式(x2-x)(
1
a2
+
1
a3
+…+
1
an+1
)>1
对任意的正整数n都成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列an中,a1=0,a2=2,an+1+an-1=2(an+1),n≥2
(1)求数列an的通项公式
(2)若不等式数学公式对任意的正整数n都成立,求x的取值范围.

查看答案和解析>>


同步练习册答案