精英家教网 > 高中数学 > 题目详情
在正方体AC1中,M为棱DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与AM所成的角为(  )
A.30°B.60°C.90°D.120°
相关习题

科目:高中数学 来源: 题型:

在正方体AC1中,M为棱DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与AM所成的角为(  )
A、30°B、60°C、90°D、120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体AC1中,M为棱DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与AM所成的角为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在正方体AC1中,M为棱DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与AM所成的角为


  1. A.
    30°
  2. B.
    60°
  3. C.
    90°
  4. D.
    120°

查看答案和解析>>

科目:高中数学 来源:海南省洋浦中学2010-2011学年高二上学期期末考试数学理科试题 题型:013

在正方体AC1中,M为棱DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与AM所成的角为

[  ]
A.

30°

B.

60°

C.

90°

D.

120°

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体AC1中,M是侧棱DD1的中点,O是底面ABCD的中心,P是棱A1B1上的一点,则OP与AM所成的角的大小为

A.           B.           C.          D.不能确定

查看答案和解析>>

科目:高中数学 来源:2008高考数学概念方法题型易误点技巧总结-直线平面简单多面体 题型:022

在正方体AC1中,M是侧棱DD1的中点,O是底面ABCD的中心,P是棱A1B1上的一点,则OP与AM所成的角的大小为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知正方体ABCD-A1B1C1D1的棱长为1.P,Q分别是棱DD1,CD的中点.
(1)证明:AC1⊥平面A1BD;PQ∥平面A1BD;
(2)探究:在棱B1C1上是否存在点M,使得二面角M-BD-A1的大小为45°?若存在,则求出B1M的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方体ABCD-A1B1C1D1的棱长为1.P,Q分别是棱DD1,CD的中点.
(1)证明:AC1⊥平面A1BD;PQ∥平面A1BD;
(2)探究:在棱B1C1上是否存在点M,使得二面角M-BD-A1的大小为45°?若存在,则求出B1M的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省株洲二中高三(下)第十次月考数学试卷(理科)(解析版) 题型:解答题

如图,已知正方体ABCD-A1B1C1D1的棱长为1.P,Q分别是棱DD1,CD的中点.
(1)证明:AC1⊥平面A1BD;PQ∥平面A1BD;
(2)探究:在棱B1C1上是否存在点M,使得二面角M-BD-A1的大小为45°?若存在,则求出B1M的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在棱长为a的正方体ABCD-A1B1C1D1中,以D为坐标原点,棱DA,DC,DD1为x,y,z轴建立空间直角坐标系,过点B作BM⊥AC1于M,求点M的坐标.

查看答案和解析>>


同步练习册答案