精英家教网 > 高中数学 > 题目详情
设f1(x)=
2
1+x
,fn+1(x)=f1[fn(x)],且an=
fn(0)-1
fn(0)+2
,则a2013=(  )
A.(
1
2
)2012
B.(
1
2
)
2013
C.(
1
2
)
2014
D.(
1
2
)
2015
相关习题

科目:高中数学 来源: 题型:

设f1(x)=
2
1+x
,fn+1(x)=f1[fn(x)],且an=
fn(0)-1
fn(0)+2
,则a2011=
(
1
2
)
2012
(
1
2
)
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

设f1(x)=
2
1+x
,fn+1(x)=f1[fn(x)],且an=
fn(0)-1
fn(0)+2
,则a2013=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f1(x)=
2
1+x
,fn+1(x)=f1[fn(x)],且an=
fn(0)-1
fn(0)+2
,n∈N*,则a2009等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f1(x)=
2
1+x
,fn+1(x)=f1[fn(x)],且an=
fn(0)-1
fn(0)+2
,则a2014=
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f1(x)=
2
1+x
,fn+1(x)=f1[fn(x)],且an=
fn(0)-1
fn(0)+2
,则a2013=(  )
A.(
1
2
)2012
B.(
1
2
)
2013
C.(
1
2
)
2014
D.(
1
2
)
2015

查看答案和解析>>

科目:高中数学 来源: 题型:

设f1(x)=
2
1+x
,定义fn+1 (x)=f1[fn(x)],an=
fn(0)-1
fn(0)+2
(n∈N*).
(1)求数列{an}的通项公式;
(2)若T2n=a1+2a2+3a3+…+2na2n,Qn=
4n2+n
4n2+4n+1
(n∈N*),试比较9T2n与Qn的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f1(x)=
2
1+x
,定义fn+1 (x)=f1[fn(x)],an=
fn(0)-1
fn(0)+2
(n∈N*).
(1)求数列{an}的通项公式;
(2)若T2n=a1+2a2+3a3+…+2na2n,Qn=
4n2+n
4n2+4n+1
(n∈N*),试比较9T2n与Qn的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f1(x)=
2
1+x
,定义fn+1(x)=f1[fn(x)],an=
fn(0)-1
fn(0)+2
,其中n∈N*,则数列{an}的通项
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f1(x)=
2
1+x
,fn+1(x)=f1[fn(x)],且an=
fn(0)-1
fn(0)+2
,则a2007=(  )
A、(-
1
2
)2005
B、(
1
2
)2006
C、(-
1
2
)2007
D、(
1
2
)2008

查看答案和解析>>

科目:高中数学 来源: 题型:

f1(x)=
2
1+x
,fn+1(x)=f1[fn(x)],且an=
fn(0)-1
fn(0)+2
,则a2010=(  )

查看答案和解析>>


同步练习册答案