精英家教网 > 高中数学 > 题目详情
定义在[-2,2]上的函数f(x)满足f(-x)=f(x),当x≥0时,f(x)单调递减,若f(1-m)<f(m)成立,则实数m的取值范围是(  )
A.
1
2
<m≤3
B.-1≤m≤3C.-1≤m<
1
2
D.m<
1
2
相关习题

科目:高中数学 来源: 题型:

定义在[-2,2]上的函数f(x)满足f(-x)=f(x),当x≥0时,f(x)单调递减,若f(1-m)<f(m)成立,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在[-2,2]上的函数f(x)满足f(-x)=f(x),当x≥0时,f(x)单调递减,若f(1-m)<f(m)成立,则实数m的取值范围是(  )
A.
1
2
<m≤3
B.-1≤m≤3C.-1≤m<
1
2
D.m<
1
2

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省杭州十四中高三(上)11月月考数学试卷(理科)(解析版) 题型:选择题

定义在[-2,2]上的函数f(x)满足f(-x)=f(x),当x≥0时,f(x)单调递减,若f(1-m)<f(m)成立,则实数m的取值范围是( )
A.
B.-1≤m≤3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

定义在[-2,2]上的函数f(x)满足f(-x)=f(x),当x≥0时,f(x)单调递减,若f(1-m)<f(m)成立,则实数m的取值范围是


  1. A.
    数学公式
  2. B.
    -1≤m≤3
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在[0,2]上的函数f(x)满足下列条件:
①对于x∈[0,2],总有f(2-x)=f(x),且f(x)≥1,f(1)=3;②对于x,y∈[1,2],若x+y≥3,则f(x)+f(y)≤f(x+y-2)+1.
证明:(1)对于x,y∈[0,1],若x+y≤1,则f(x+y)≥f(x)+f(y)-1
(2)f(
1
3n
)≤
2
3n
+1
(n∈N*);
(3)x∈[1,2]时,1≤f(x)≤13-6x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设定义在[0,2]上的函数f(x)满足下列条件:
①对于x∈[0,2],总有f(2-x)=f(x),且f(x)≥1,f(1)=3;②对于x,y∈[1,2],若x+y≥3,则f(x)+f(y)≤f(x+y-2)+1.
证明:(1)对于x,y∈[0,1],若x+y≤1,则f(x+y)≥f(x)+f(y)-1
(2)数学公式(n∈N*);
(3)x∈[1,2]时,1≤f(x)≤13-6x.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省扬州中学高三(上)12月月考数学试卷(解析版) 题型:解答题

设定义在[0,2]上的函数f(x)满足下列条件:
①对于x∈[0,2],总有f(2-x)=f(x),且f(x)≥1,f(1)=3;②对于x,y∈[1,2],若x+y≥3,则f(x)+f(y)≤f(x+y-2)+1.
证明:(1)对于x,y∈[0,1],若x+y≤1,则f(x+y)≥f(x)+f(y)-1
(2)(n∈N*);
(3)x∈[1,2]时,1≤f(x)≤13-6x.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);
②当2≤x≤4时,f(x)=1-|x-3|.试解答下列问题:
(1)设c>2,方程f(x)=2的根由小到大依次记为a1,a2,a3,…,an,…,试证明:数列a2n-1+a2n为等比数列;
(2)①是否存在常数c,使函数的所有极大值点均落在同一条直线上?若存在,试求出c的所有取值并写出直线方程;若不存在,试说明理由;②是否存在常数c,使函数的所有极大值点均落在同一条以原点为顶点的抛物线上?若存在,试求出c的所有取值并写出抛物线方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[1,+∞)上的函数f(x)满足:①f(2x)=2f(x);②当x∈[2,4]时,f(x)=1-|x-3|,则集合{x|f(x)=f(36)}中的最小元素是
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[1,+∞)上的函数f(x)满足f(x)=2f(2x),当x∈[1,2]时,f(x)=4-4|2x-3|,设函数f(x)在x∈[2n-1,2n],(n∈N*)上的极大值为an,则数列{an}的前n项和为(  )

查看答案和解析>>


同步练习册答案