精英家教网 > 高中数学 > 题目详情
函数y=
x2+1
x
(x>0)
的值域是(  )
A.[2,+∞)B.(-∞,-2]C.(-∞,-2]∪[2,+∞)D.[-2,2]
相关习题

科目:高中数学 来源: 题型:

函数y=
x2+1
x
(x>0)
的值域是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=
x2+1
x
(x>0)
的值域是(  )
A.[2,+∞)B.(-∞,-2]C.(-∞,-2]∪[2,+∞)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:①f(x)在[m,n]内是单调的;②当定义域是[m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“和谐区间”.若函数f(x)=
a+1
a
-
1
x
(a>0)
有“和谐区间”,则函数g(x)=
1
3
x3+
1
2
ax2+(a-1)x+5
的极值点x1,x2满足(  )
A、x1∈(0,1),x2∈(1,+∞)
B、x1∈(-∞,0),x2∈(0,1)
C、x1∈(-∞,0),x2∈(-∞,0)
D、x1∈(1,+∞),x2∈(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若函数y=f(x)在某一区间D上任取两个实数x1、x2,且x1≠x2,都有
f(x1)+f(x2)
2
>f(
x1+x2
2
)
,则称函数y=f(x)在区间D上具有性质L.
(1)写出一个在其定义域上具有性质L的对数函数(不要求证明).
(2)对于函数f(x)=x+
1
x
,判断其在区间(0,+∞)上是否具有性质L?并用所给定义证明你的结论.
(3)若函数f(x)=
1
x
-ax2
在区间(0,1)上具有性质L,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①函数y=
x-1
x+1
图象的对称中心是(1,1);
②“x>2是x2-3x+2>0”的充分不必要条件;
③对任意两实数m,n,定义定点“*”如下:m*n=
m  若m≤n
n  若m>n
,则函数f(x)=log
1
2
(3x-2)*log2x
的值域为(-∞,0];
④若函数f(x)=
(3a-1)x+4a(x<1)
logax      (x≥1)
对任意的x1≠x2都有
f(x2)-f(x1)
x2-x1
<0
,则实数a的取值范围是(-
1
7
,1],
其中正确命题的序号为
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:①若区间D内任意实数x都有f(x+1)>f(x),则y=f(x)在D上是增函数;②y=-
1
x
在定义域内是增函数;③函数f(x)=
1-x2
|x+1|-1
图象关于原点对称;④如果关于实数x的方程ax2+
1
x
=3x
的所有解中,正数解仅有一个,那么实数a的取值范围是a≤0;  其中正确的序号是

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题:①若区间D内任意实数x都有f(x+1)>f(x),则y=f(x)在D上是增函数;②y=-
1
x
在定义域内是增函数;③函数f(x)=
1-x2
|x+1|-1
图象关于原点对称;④如果关于实数x的方程ax2+
1
x
=3x
的所有解中,正数解仅有一个,那么实数a的取值范围是a≤0;  其中正确的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(Ⅰ)如果函数y=x+
2b
x
(x>0)的值域为[6,+∞),求b的值;
(Ⅱ)研究函数y=x2+
c
x2
(常数c>0)在定义域内的单调性,并说明理由;
(Ⅲ)对函数y=x+
a
x
和y=x2+
a
x2
(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
1
x
n+(
1
x2
+x
n(n是正整数)在区间[
1
2
,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源:上海 题型:解答题

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(1)如果函数y=x+
2b
x
(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+
c
x2
(常数c>0)在定义域内的单调性,并说明理由;
(3)对函数y=x+
a
x
和y=x2+
a
x2
(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
1
x
)n
+(
1
x2
+x)n
(n是正整数)在区间[
1
2
,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
(x>0)有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(1)如果函数y=x+
b2
x
(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+
c
x2
(x>0,常数c>0)在定义域内的单调性,并用定义证明(若有多个单调区间,请选择一个证明);
(3)对函数y=x+
a
x
和y=x2+
a
x2
(x>0,常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
1
x
)2
+(
1
x2
+x)2
在区间[
1
2
,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>


同步练习册答案