精英家教网 > 高中数学 > 题目详情
已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时(  )
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0
相关习题

科目:高中数学 来源: 题型:

已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时(  )
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时(  )
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆市铜梁中学高二(下)第一次月考数学试卷(理科)(解析版) 题型:选择题

已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时


  1. A.
    f′(x)>0,g′(x)>0
  2. B.
    f′(x)>0,g′(x)<0
  3. C.
    f′(x)<0,g′(x)>0
  4. D.
    f′(x)<0,g′(x)<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f (x)对任意实数x,y满足f(x+y)+f(x-y)=2f (x)cosy,且f(0)=0,f(
π
2
)=1.给出下列结论:
①f(
π
4
)=
1
2

②f(x)为奇函数  
③f(x)为周期函数  
④f(x)在(0,π)内为单调函数
其中正确的结论是
 
.( 填上所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象经过点(1,λ),且对任意x∈R,都有f(x+1)=f(x)+2.数列{an}满足a1=λ-2,an+1=
2n,n为奇数
f(an),n为偶数

(1)当x为正整数时,求f(n)的表达式;
(2)设λ=3,求a1+a2+a3+…+a2n
(3)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足:f(ab)=af(b)+bf(a).
(1)求f(0)及f(1)的值;
(2)判断的奇偶性,并证明你的结论;
(3)若f(2)=2,un=
f(2n)2n
(n∈N*)
,求证数列{un}是等差数列,并求{un}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数y=f(x)和y=g(x),它们分别满足条件:对任意a,b∈R,都有f(a+b)=f(a)+f(b);对任意a,b∈R,都有g(a+b)=g(a)•g(b),且对任意x>0,g(x)>1.
(1)求f(0)、g(0)的值;
(2)证明函数y=f(x)是奇函数;
(3)证明x<0时,0<g(x)<1,且函数y=g(x)在R上是增函数;
(4)试各举出一个符合函数y=f(x)和y=g(x)的实例.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=
-g(x)+n2g(x)+m
是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>


同步练习册答案