精英家教网 > 高中数学 > 题目详情
已知{an}是以a(a>0)为首项以q(-1<q<0)为公比的等比数列,设A=
lim
n→∞
(a1+a2+…+an)
B=
lim
n→∞
(a1+a2+a3+…+a2n)
C=
lim
n→∞
(a1+a3+a5+…+a2n-1)
D=
lim
n→∞
(a2+a4+a6+…+a2n)
,则A、B、C、D中最大的取值为(  )
A.BB.A与BC.CD.D
相关习题

科目:高中数学 来源: 题型:

已知{an}是以a(a>0)为首项以q(-1<q<0)为公比的等比数列,设A=
lim
n→∞
(a1+a2+…+an)
B=
lim
n→∞
(a1+a2+a3+…+a2n)
C=
lim
n→∞
(a1+a3+a5+…+a2n-1)
D=
lim
n→∞
(a2+a4+a6+…+a2n)
,则A、B、C、D中最大的取值为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知{an}是以a(a>0)为首项以q(-1<q<0)为公比的等比数列,设A=
lim
n→∞
(a1+a2+…+an)
B=
lim
n→∞
(a1+a2+a3+…+a2n)
C=
lim
n→∞
(a1+a3+a5+…+a2n-1)
D=
lim
n→∞
(a2+a4+a6+…+a2n)
,则A、B、C、D中最大的取值为(  )
A.BB.A与BC.CD.D

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线an-1y2-anx2=an-1an的一个焦点(0,
cn
)
,一条渐近线方程为y=
2
x
,其中an是以4为首项的正项数列,数列cn的首项为6.
(Ⅰ)求数列Cn的通项公式;
(Ⅱ)若不等式
1
c1
+
2
c2
+…+
n
cn
+
n
3•2n
2
3
+loga(2x+1)(a>0且a≠1)
对一切自然数n恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

下列叙述正确的是


  1. A.
    等比数列的首项不能为零,但公比可以为零
  2. B.
    等比数列的公比q>0时,是递增数列
  3. C.
    若G2=ab,则G是a,b的等比中项
  4. D.
    已知等比数列{an}的通项公式an=(-2)n,则它的公比q=-2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省泉州市安溪八中高二(上)期中数学试卷(理科)(解析版) 题型:选择题

下列叙述正确的是( )
A.等比数列的首项不能为零,但公比可以为零
B.等比数列的公比q>0时,是递增数列
C.若G2=ab,则G是a,b的等比中项
D.已知等比数列{an}的通项公式an=(-2)n,则它的公比q=-2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省泉州市安溪八中高二(上)期中数学试卷(理科)(解析版) 题型:选择题

下列叙述正确的是( )
A.等比数列的首项不能为零,但公比可以为零
B.等比数列的公比q>0时,是递增数列
C.若G2=ab,则G是a,b的等比中项
D.已知等比数列{an}的通项公式an=(-2)n,则它的公比q=-2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列叙述正确的是(  )

查看答案和解析>>

科目:高中数学 来源:2010年上海市宝山区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

已知数列{an}的前n项和为Sn,a1=1,3an+1+4Sn=3(n为正整数).
(1)求数列{an}的通项公式;
(2)记S=a1+a2+…+an+…,若对任意正整数n,kS<Sn恒成立,求k的取值范围?
(3)已知集合A={x|x2+a≤(a+1)x,a>0},若以a为首项,a为公比的等比数列前n项和记为Tn,问是否存在实数a使得对于任意的n∈N*,均有Tn∈A.若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},a1=2a+1(a≠-1的常数),an=2an-1+n2-4n+2(n≥2,n∈N?),数列{bn}的首项,b1=a,bn=an+n2(n≥2,n∈N?).
(1)证明:{bn}从第2项起是以2为公比的等比数列并求{bn}通项公式;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年天津一中高三(下)4月月考数学试卷(理科)(解析版) 题型:解答题

已知数列{an},a1=2a+1(a≠-1的常数),an=2an-1+n2-4n+2(n≥2,n∈N?),数列{bn}的首项,b1=a,bn=an+n2(n≥2,n∈N?).
(1)证明:{bn}从第2项起是以2为公比的等比数列并求{bn}通项公式;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.

查看答案和解析>>


同步练习册答案