精英家教网 > 高中数学 > 题目详情
平面直角坐标系中,若两直线l1:mx+2y+m-2=0,l2:4x+(m-2)y+2=0互相平行,则常数m等于(  )
A.-2B.4C.-2或4D.0
相关习题

科目:高中数学 来源: 题型:

平面直角坐标系中,若两直线l1:mx+2y+m-2=0,l2:4x+(m-2)y+2=0互相平行,则常数m等于(  )
A、-2B、4C、-2或4D、0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面直角坐标系中,若两直线l1:mx+2y+m-2=0,l2:4x+(m-2)y+2=0互相平行,则常数m等于(  )
A.-2B.4C.-2或4D.0

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省温州中学高一(下)期中数学试卷(解析版) 题型:选择题

平面直角坐标系中,若两直线l1:mx+2y+m-2=0,l2:4x+(m-2)y+2=0互相平行,则常数m等于( )
A.-2
B.4
C.-2或4
D.0

查看答案和解析>>

科目:高中数学 来源:闸北区二模 题型:解答题

在平面直角坐标系xOy中,已知曲线C1为到定点F(
3
2
1
2
)
的距离与到定直线l1
3
x+y+2=0
的距离相等的动点P的轨迹,曲线C2是由曲线C1绕坐标原点O按顺时针方向旋转30°形成的.
(1)求曲线C1与坐标轴的交点坐标,以及曲线C2的方程;
(2)过定点M0(m,0)(m>2)的直线l2交曲线C2于A、B两点,已知曲线C2上存在不同的两点C、D关于直线l2对称.问:弦长|CD|是否存在最大值?若存在,求其最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年上海市闸北区高考数学二模试卷(文科)(解析版) 题型:解答题

在平面直角坐标系xOy中,已知曲线C1为到定点F()的距离与到定直线l1:x+y+=0的距离相等的动点P的轨迹,曲线C2是由曲线C1绕坐标原点O按顺时针方向旋转45°形成的.
(1)求曲线C1与坐标轴的交点坐标,以及曲线C2的方程;
(2)过定点M(m,0)(m>0)的直线l2交曲线C2于A、B两点,点N是点M关于原点的对称点.若,证明:⊥().

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中有两定点F1(0,
3
)
F2(0,-
3
)
,若动点M满足|
MF1
|+|
MF2
|=4
,设动点M的轨迹为C.
(1)求曲线C的方程;
(2)设直线l:y=kx+t交曲线C于A、B两点,交直线l1:y=k1x于点D,若k•k1=-4,证明:D为AB的中点.

查看答案和解析>>

科目:高中数学 来源:2011年山东省潍坊市高三摸底数学试卷(理科)(解析版) 题型:解答题

在平面直角坐标系xOy中有两定点,若动点M满足,设动点M的轨迹为C.
(1)求曲线C的方程;
(2)设直线l:y=kx+t交曲线C于A、B两点,交直线l1:y=k1x于点D,若k•k1=-4,证明:D为AB的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

A组:直角坐标系xoy中,已知中心在原点,离心率为
1
2
的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.
(1)求椭圆E的方程;
(2)设P是椭圆E上一点,过P作两条斜率之积为
1
2
的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.
B组:如图,在平面直角坐标系xoy中,椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1(-c,0),F2(c,0).已知点(1,e)和(e,
3
2
)
都在椭圆上,其中e为椭圆离心率.
(1)求椭圆的方程;
(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P,若AF1-BF2=
6
2
,求直线AF1的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4
(I)若直线l过点A(4,0),且被圆C1截得的弦长为2
3
,求直线l的方程;
(II)设P(a,b)为平面上的点,满足:存在过点P的两条互相垂的直线l1与l2,l1的斜率为2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求满足条件的a,b的关系式.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省黄冈市黄梅三中高一(下)期末数学复习试卷(4)(解析版) 题型:解答题

在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4
(I)若直线l过点A(4,0),且被圆C1截得的弦长为,求直线l的方程;
(II)设P(a,b)为平面上的点,满足:存在过点P的两条互相垂的直线l1与l2,l1的斜率为2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求满足条件的a,b的关系式.

查看答案和解析>>


同步练习册答案