精英家教网 > 初中数学 > 题目详情
已知抛物线y=x2-2x+c与x轴的一个交点为(-1,0),则方程x2-2x+c=0的两个根为(  )
A.x1=1,x2=3B.x1=1,x2=-3
C.x1=-1,x2=3D.x1=-1,x2=-3
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-2x-8.
(1)试说明该抛物线与x轴一定有两个交点.
(2)若该抛物线与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=-
23
x2+bx+c
与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2-2x-3=0的两个根(x1<x2).
(1)求抛物线的解析式;
(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知抛物线y=x2-2x+m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.
(1)求m的值;
(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线C′,且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线C′上求点P,使得△EFP是以EF为直角边的直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2-2x+m与x轴有两个不同交点A(x1,0)、B(x2,0)并且x1<x2,x12+x22=4,
①求这条抛物线的解析式;
②设抛物线的顶点为C,P是抛物线上一点,且∠PAC=90°,求P点坐标及△PAC内切圆的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2-2x+m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.
(1)求m的值;
(2)点C在抛物线上,若△ABC是直角三角形,直接写出C的坐标:
(2,1)或(3,4)
(2,1)或(3,4)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2-2x-3.
(1)它与x轴的交点的坐标为
(-1,0),(3,0)
(-1,0),(3,0)

(2)在坐标系中利用描点法画出它的图象;
(3)将该抛物线在x轴下方的部分(不包含与x轴的交点)记为G,若直线y=x+b与G只有一个公共点,则b的取值范围是
-3≤b<1或b=-
21
4
-3≤b<1或b=-
21
4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=x2-2x+m与x轴有两个不同交点A(x1,0)、B(x2,0)并且x1<x2,x12+x22=4,
①求这条抛物线的解析式;
②设抛物线的顶点为C,P是抛物线上一点,且∠PAC=90°,求P点坐标及△PAC内切圆的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线数学公式与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2-2x-3=0的两个根(x1<x2).
(1)求抛物线的解析式;
(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=-x2+2x+m-1与x轴有两个交点A、B.
(1)求m的取值范围;
(2)如果点A的坐标为(-1,0),求此抛物线的解析式,并求出顶点C的坐标;
(3)在第(2)小题的抛物线上是否存在一点P(与C点不重合)使S△PAB=S△CAB?如果存在,求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=x2-2x+m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.
(1)求m的值;
(2)点C在抛物线上,若△ABC是直角三角形,直接写出C的坐标:______.

查看答案和解析>>


同步练习册答案