精英家教网 > 高中数学 > 题目详情
设直线与平面所成角的大小范围为集合P,二面角的平面角大小范围为集合Q,异面直线所成角的大小范围为集合R,则P、Q、R的关系为(  )
A.R=P?QB.R?P?QC.P?R?QD.R?P=Q
相关习题

科目:高中数学 来源: 题型:

设直线与平面所成角的大小范围为集合P,二面角的平面角大小范围为集合Q,异面直线所成角的大小范围为集合R,则P、Q、R的关系为(  )
A、R=P⊆QB、R⊆P⊆QC、P⊆R⊆QD、R⊆P=Q

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设直线与平面所成角的大小范围为集合P,二面角的平面角大小范围为集合Q,异面直线所成角的大小范围为集合R,则P、Q、R的关系为(  )
A.R=P⊆QB.R⊆P⊆QC.P⊆R⊆QD.R⊆P=Q

查看答案和解析>>

科目:高中数学 来源:2010年湖北省武汉八中高考数学二模试卷(文科)(解析版) 题型:选择题

设直线与平面所成角的大小范围为集合P,二面角的平面角大小范围为集合Q,异面直线所成角的大小范围为集合R,则P、Q、R的关系为( )
A.R=P⊆Q
B.R⊆P⊆Q
C.P⊆R⊆Q
D.R⊆P=Q

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设直线与平面所成角的大小范围为集合P,二面角的平面角大小范围为集合Q,异面直线所成角的大小范围为集合R,则P、Q、R的关系为


  1. A.
    R=P⊆Q
  2. B.
    R⊆P⊆Q
  3. C.
    P⊆R⊆Q
  4. D.
    R⊆P=Q

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线与平面所成角的大小范围为集合,二面角的平面角大小范围为集合,异面直线所成角的大小范围为集合,则的关系为(   )

A.    B.           C.           D.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知在锐角ΔABC中,角所对的边分别为,且

(I )求角大小;

(II)当时,求的取值范围.

20.如图1,在平面内,的矩形,是正三角形,将沿折起,使如图2,的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。

(1)求证:平面

(2)设二面角的平面角为,若,求线段长的取值范围。

 


21.已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点

(1)求椭圆C的方程;

(2)求三角形MNT的面积的最大值

22. 已知函数

(Ⅰ)若上存在最大值与最小值,且其最大值与最小值的和为,试求的值。

(Ⅱ)若为奇函数:

(1)是否存在实数,使得为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;

(2)如果当时,都有恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2010-2011学年四川省高三四月月考文科数学卷 题型:解答题

如图1,在平面内,ABCD是的菱形,都是正方形。将两个正方形分别沿AD,CD折起,使重合于点D1。设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设(图2)。

(1)设二面角E – AC – D1的大小为q ,若,求的取值范围;

(2)在线段上是否存在点,使平面平面,若存在,求出所成的比;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在平面内,ABCD的菱形,都是正方形。将两个正方形分别沿AD,CD折起,使重合于点D1。设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设(图2)。

(1)设二面角E – AC – D1的大小为q,若,求的取值范围;
(2)在线段上是否存在点,使平面平面,若存在,求出所成的比;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在平面内,ABCD的菱形,都是正方形。将两个正方形分别沿AD,CD折起,使重合于点D1。设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设(图2)。

(1)设二面角E – AC – D1的大小为q,若,求的取值范围;
(2)在线段上是否存在点,使平面平面,若存在,求出所成的比;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在平面内,ABCD是∠BAD=60°且AB=a的菱形,ADD''A1和CDD'C1都是正方形.将两个正方形分别沿AD,CD折起,使D''与D'重合于点D1.设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设BE=t(t>0)(图2).
(1)设二面角E-AC-D1的大小为q,若
π
4
≤θ≤
π
3
,求t的取值范围;
(2)在线段D1E上是否存在点P,使平面PA1C1∥平面EAC,若存在,求出P分
D1E
所成的比λ;若不存在,请说明理由.
精英家教网

查看答案和解析>>


同步练习册答案