精英家教网 > 高中数学 > 题目详情
设函数f(x)=tan(ωx+?),(ω>0),条件P:“f(0)=0”;条件Q:“f(x)为奇函数”,则P是Q的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=tan(ωx+?),(ω>0),条件P:“f(0)=0”;条件Q:“f(x)为奇函数”,则P是Q的(  )

查看答案和解析>>

科目:高中数学 来源:孝感模拟 题型:单选题

设函数f(x)=tan(ωx+?),(ω>0),条件P:“f(0)=0”;条件Q:“f(x)为奇函数”,则P是Q的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省宁波市象山中学高三(上)月考数学试卷(解析版) 题型:选择题

设函数f(x)=tan(ωx+ϕ),(ω>0),条件P:“f(0)=0”;条件Q:“f(x)为奇函数”,则P是Q的( )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省孝感市高三第二次统考数学试卷(理科)(解析版) 题型:选择题

设函数f(x)=tan(ωx+ϕ),(ω>0),条件P:“f(0)=0”;条件Q:“f(x)为奇函数”,则P是Q的( )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3,若0≤θ<
π
4
时,f(m•tanθ)+f(1-m)>0恒成立,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)(x∈R)的部分图象如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设g(x)=f(x)-
3
f(x+
π
4
)
,且tanα=
2
,求g(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=3sin(ωx+
π
6
)
,(ω>0),x∈(-∞,+∞),且以
π
2
为最小正周期.
(1)求f(0);
(2)求f(x)的解析式;
(3)已知f(
α
4
+
π
12
)=
9
5
,求sinαtanα的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=3sin(ωx+
π
6
)
,(ω>0),x∈(-∞,+∞),且以
π
2
为最小正周期.
(1)求f(0);
(2)求f(x)的解析式;
(3)已知f(
α
4
+
π
12
)=
9
5
,求sinαtanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为定义在区间I上的函数.若对I上任意两点x1,x2(x1≠x2)和实数λ∈(0,1),总有f(λx1+(1-λ)x2)<λf(x1)+(1-λ)f(x2),则称f(x)为I上的严格下凸函数.若f(x)为I上的严格下凸函数,其充要条件为:对任意x∈I有f(x)>0成立(f(x)是函数f(x)导函数的导函数),则以下结论正确的有
①④
①④

①f(x)=
2x+2014
3x+7
,x∈[0,2014]是严格下凸函数.
②设x1,x2∈(0,
π
2
)且x1≠x2,则有tan(
x1+x2
2
)>
1
2
(tanx1+tanx2)

③若f(x)是区间I上的严格下凸函数,对任意x0∈I,则都有f(x)>f′(x0)(x-x0)+f(x0
④f(x)=
1
6
x3
+sinx,(x∈(
π
6
π
3
))是严格下凸函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)为定义在区间I上的函数.若对I上任意两点x1,x2(x1≠x2)和实数λ∈(0,1),总有f(λx1+(1-λ)x2)<λf(x1)+(1-λ)f(x2),则称f(x)为I上的严格下凸函数.若f(x)为I上的严格下凸函数,其充要条件为:对任意x∈I有f(x)>0成立(f(x)是函数f(x)导函数的导函数),则以下结论正确的有______.
①f(x)=
2x+2014
3x+7
,x∈[0,2014]是严格下凸函数.
②设x1,x2∈(0,
π
2
)且x1≠x2,则有tan(
x1+x2
2
)>
1
2
(tanx1+tanx2)

③若f(x)是区间I上的严格下凸函数,对任意x0∈I,则都有f(x)>f′(x0)(x-x0)+f(x0
④f(x)=
1
6
x3
+sinx,(x∈(
π
6
π
3
))是严格下凸函数.

查看答案和解析>>


同步练习册答案