精英家教网 > 高中数学 > 题目详情
动圆与定圆:A:(x+2)2+y2=1外切,且和直线x=l相切,则动圆圆心的轨迹是(  )
A.直线B.抛物线C.椭圆D.双曲线
相关习题

科目:高中数学 来源: 题型:

动圆与定圆:A:(x+2)2+y2=1外切,且和直线x=l相切,则动圆圆心的轨迹是(  )
A、直线B、抛物线C、椭圆D、双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

动圆与定圆:A:(x+2)2+y2=1外切,且和直线x=l相切,则动圆圆心的轨迹是(  )
A.直线B.抛物线C.椭圆D.双曲线

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省湛江市高二(上)期末数学试卷(选修1-1)(解析版) 题型:选择题

动圆与定圆:A:(x+2)2+y2=1外切,且和直线x=l相切,则动圆圆心的轨迹是( )
A.直线
B.抛物线
C.椭圆
D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

动圆与定圆:A:(x+2)2+y2=1外切,且和直线x=l相切,则动圆圆心的轨迹是(  )

A.直线 B.抛物线 C.椭圆 D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆A:(x-2)2+y2=1,曲线B:6-x=
4-y2
和直线l:y=x.
(1)若点M、N、P分别是圆A、曲线B和直线l上的任意点,求|PM|+|PN|的最小值;
(2)已知动直线m:(a-2)x+by-2a+3=0(a,b∈R)与圆A相交于S、T两点,又点Q的坐标是(a,b).
①判断点Q与圆A的位置关系;
②求证:当实数a,b的值发生变化时,经过S、T、Q三点的圆总过定点,并求出这个定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆A:(x-2)2+y2=1,曲线B:6-x=
4-y2
和直线l:y=x.
(1)若点M、N、P分别是圆A、曲线B和直线l上的任意点,求|PM|+|PN|的最小值;
(2)已知动直线m:(a-2)x+by-2a+3=0(a,b∈R)与圆A相交于S、T两点,又点Q的坐标是(a,b).
①判断点Q与圆A的位置关系;
②求证:当实数a,b的值发生变化时,经过S、T、Q三点的圆总过定点,并求出这个定点坐标.

查看答案和解析>>

科目:高中数学 来源:专项题 题型:单选题

已知圆A:(x+2)2+ y2=l与定直线l:x=1,且动圆P和圆A外切并与直线l相切,则动圆的圆心P的轨迹方程是
[     ]
A.y2=-8x
B.y2= 8x
C.y2=-4x
D.y2=4x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆A:(x+1)2+y2=8,点B(1,0),D为圆上一动点,过BD上一点E作一条直线交AD于点S,且S点满足
SE
=
1
2
(
SD
+
SB
)
SE
BD
=0

(1)求点S的轨迹方程;
(2)若直线l的方程为:x=2,过B的直线与点S的轨迹相交于F、G两点,点P在l上,且PG∥x轴,求证:直线FP经过一定点,并求此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆P与定圆C:(x-2)2+y2=1相外切,又与定直线l:x=-1相切,那么动圆的圆心P的轨迹方程是(  )

查看答案和解析>>

科目:高中数学 来源:2011年浙江省杭州市萧山区高考数学模拟试卷04(理科)(解析版) 题型:解答题

已知圆A:(x+1)2+y2=8,点B(1,0),D为圆上一动点,过BD上一点E作一条直线交AD于点S,且S点满足
(1)求点S的轨迹方程;
(2)若直线l的方程为:x=2,过B的直线与点S的轨迹相交于F、G两点,点P在l上,且PG∥x轴,求证:直线FP经过一定点,并求此定点的坐标.

查看答案和解析>>


同步练习册答案