精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
1+x
,x∈[1,2],若常数M满足:对任意的x∈[1,2],f(x)≥M,且存在x0∈[1,2],使f(x0)=M,则M为(  )
A.1B.2C.
1
3
D.
1
2
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
1
1+x
,x∈[1,2],若常数M满足:对任意的x∈[1,2],f(x)≥M,且存在x0∈[1,2],使f(x0)=M,则M为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
1
1+x
,x∈[1,2],若常数M满足:对任意的x∈[1,2],f(x)≥M,且存在x0∈[1,2],使f(x0)=M,则M为(  )
A.1B.2C.
1
3
D.
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=
π
8

(1)求φ;
(2)若函数y=2f(x)+a,(a为常数a∈R)在x∈[
11π
24
4
]
上的最大值和最小值之和为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某研究性学习小组研究函数f(x)=ax3+bx(a≠0,a,b为常数)的 性质:
(Ⅰ)甲同学得到如下表所示的部分自变量x及其对应函数值y的近似值(精确到0.01):
x -1 -0.72 -0.44 -0.16 0.12 0.4
y的近似值 4.00 1.15 0.02 -0.14 0.11 0.08
请你根据上述表格中的数据回答下列问题:
(i)函数f(x)在区间(0.4,0.44)内是否存在零点,写出你的判断并加以证明;
(ii)证明:函数f(x)在区间(-∞,-0.3)上单调递减;
(Ⅱ)乙同学发现对于函数f(x)图象上的两点A(-1,4),B(t,f(t))(-1<t<2),存在m∈(-1,t),使f'(m)的值恰为直线AB的斜率,请你判断乙同学的结论是否正确?若正确,请给出证明并确定m的个数,若不正确,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈D,若存在常数C,对任意x1∈D存在唯一的x2∈D,使得f(x1)+f(x2)=C,则称常数C是函数f(x)在D上的“顶级数”.若函数f(x)=log2x,(x∈[1,2]),则f(x)在[1,2]上的顶级数是
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数),使得 f(x)≥g(x)对一切实数x都成立,那么称为 g(x)为函数 f(x)的一个承托函数,给出如下命题:
(1)定义域和值域都是R的函数f(x)不存在承托函数;
(2)g(x)=2x为函数f(x)=2x的一个承托函数;
(3)g(x)=ex为函数f(x)=ex的一个承托函数;
(4)函数f(x)=-
1
5x2-4x+11
,若函数g(x)的图象恰为f(x)在点P(1,-
1
12
)
处的切线,则g(x)为函数f(x)的一个承托函数.其中正确的命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源:江西 题型:解答题

设函数f(x)=
1
a
x,0≤x≤a
 
1
1-a
(1-x),
a<x≤1
常数且a∈(0,1).
(1)当a=
1
2
时,求f(f(
1
3
));
(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点,试确定函数有且仅有两个二阶周期点,并求二阶周期点x1,x2
(3)对于(2)中x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为s(a),求s(a)在区间[
1
3
1
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

问题1:已知函数f(x)=
x
1+x
,则f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=
19
2
19
2

我们若把每一个函数值计算出,再求和,对函数值个数较少时是常用方法,但函数值个数较多时,运算就较繁锁.观察和式,我们发现f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
f(
1
10
)+f(10)
可一般表示为f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
为定值,有此规律从而很方便求和,请求出上述结果,并用此方法求解下面问题:
问题2:已知函数f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x2+1,g(x)=2x,数列{an}满足对于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.数列{bn}满足bn=logana,设k,l∈N*bk=
1
1+3l
bl=
1
1+3k

(1)求证:数列{an}为等比数列,并指出公比;
(2)若k+l=9,求数列{bn}的通项公式.
(3)若k+l=M0(M0为常数),求数列{an}从第几项起,后面的项都满足an>1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=3x2+1,g(x)=2x,数列{an}满足对于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.数列{bn}满足bn=logana,设k,l∈N*bk=
1
1+3l
bl=
1
1+3k

(1)求证:数列{an}为等比数列,并指出公比;
(2)若k+l=9,求数列{bn}的通项公式.
(3)若k+l=M0(M0为常数),求数列{an}从第几项起,后面的项都满足an>1.

查看答案和解析>>


同步练习册答案