精英家教网 > 高中数学 > 题目详情
点P是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)左支上的一点,其右焦点为F(c,0),若M为线段FP的中点,且M到坐标原点的距离为
1
8
c
,则双曲线的离心率e范围是(  )
A.(1,8]B.(1,
4
3
]
C.(
4
3
5
3
)
D.(2,3]
相关习题

科目:高中数学 来源: 题型:

点P是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)左支上的一点,其右焦点为F(c,0),若M为线段FP的中点,且M到坐标原点的距离为
1
8
c
,则双曲线的离心率e范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点P是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)左支上的一点,其右焦点为F(c,0),若M为线段FP的中点,且M到坐标原点的距离为
1
8
c
,则双曲线的离心率e范围是(  )
A.(1,8]B.(1,
4
3
]
C.(
4
3
5
3
)
D.(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则△PF1F2的内切圆圆心的横坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,F1,F2分别是双曲线的左、右焦点,且|PF1|=2|PF2|,则双曲线的离心率为(  )
A、
5
B、
5
2
C、
10
D、
10
2

查看答案和解析>>

科目:高中数学 来源: 题型:

P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上的点,F1、F2是其焦点,且
PF1
PF2
=0,若△F1PF2的面积是9,a+b=7,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上的点,F1、F2是其焦点,且
PF1
PF2
=0,若△F1PF2的面积是9,a+b=7,则双曲线的离心率为(  )
A.
7
4
B.
5
4
C.
5
2
D.
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)左支上的一点,F1、F2分别是双曲线的左、右焦点,则以|PF2|为直径的圆与以双曲线的实轴为直径的圆的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)右支上一点,F1,F2分别是双曲线的左、右焦点,I为△PF1F2的内心(内心--角平分线交点且满足到三角形各边距离相等),若 S △IPF1=S △IPF2+
1
4
S △IF1F2成立,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)右支上一点,F1,F2分别是双曲线的左、右焦点,I为△PF1F2的内心(内心--角平分线交点且满足到三角形各边距离相等),若 S △IPF1=S △IPF2+
1
4
S △IF1F2成立,则双曲线的离心率为(  )
A.
5
3
B.
5
2
C.4D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上除顶点外的任意一点,F1、F2分别是双曲线的左、右焦点,△PF1F2的内切圆与边F1F2相切于点M,则
F1M
MF2
=(  )
A.a2B.b2C.a2+b2D.
1
2
b2

查看答案和解析>>


同步练习册答案