精英家教网 > 高中数学 > 题目详情
已知点A(-5,多)、B(1,2),过点C(-多,2),且与点A、B的距离相等的直线方程是(  )
A.x+4y-7=0B.4x-y+7=0
C.x+4y-7=0或x+1=0D.x+4y-7=0或4x-y+7=0
相关习题

科目:高中数学 来源:不详 题型:单选题

已知点A(-5,多)、B(1,2),过点C(-多,2),且与点A、B的距离相等的直线方程是(  )
A.x+4y-7=0B.4x-y+7=0
C.x+4y-7=0或x+1=0D.x+4y-7=0或4x-y+7=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(5,2)、B(1,1)、C(1,)、P(x,y)在△ABC表示的区域内(包括边界)且目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值为(    )

A.         B.       C.4        D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面区域D由以A(1,3),B(5,2),C(3,1)为顶点的三角形内部以及边界组成.若在区域D上有无穷多个点(x,y)可使目标函数z=x+my取得最小值,则m=(  )
A、-2B、-1C、1D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

9.已知平面区域D由以A(1,3)、B(5,2)、C(3,1)为顶点的三角形内部和边界组成。若在区域D上有无穷多个点(x,y)可使目标函数z=x+my取得最小值,则m=

A.-2                B.-1                  C.1               D.4

查看答案和解析>>

科目:高中数学 来源:2010年福建省龙岩市高三第二次质检数学试题(理) 题型:解答题

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。K^S*5U.C#O
(1)(本小题满分7分)选修4-2:矩阵与变换
已知向量=,变换T的矩阵为A=,平面上的点P(1,1)在变换T
作用下得到点P′(3,3),求A4.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
直线与圆>0)相交于AB两点,设
P(-1,0),且|PA|:|PB|=1:2,求实数的值
(3)(本小题满分7分)选修4-5:不等式选讲K^S*5U.C#O
对于xR,不等式|x-1|+|x-2|≥2+2恒成立,试求2+的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分)选修4-2:矩阵与变换
已知向量=,变换T的矩阵为A=,平面上的点P(1,1)在变换T
作用下得到点P′(3,3),求A4.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
直线与圆>0)相交于AB两点,设
P(-1,0),且|PA|:|PB|=1:2,求实数的值
(3)(本小题满分7分)选修4-5:不等式选讲
对于xR,不等式|x-1|+|x-2|≥2+2恒成立,试求2+的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
12
34

①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
x=1+2cosα
y=-1+2sinα
(a为参数),点Q极坐标为(2,
7
4
π).
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分,作答时,先在答题卡上把所选题目对应的题号填入括号中.
(1)选修4-2:矩阵与变换
已知二阶矩阵M=
a1
3d
有特征值λ=-1及对应的一个特征向量e1=
1
-3

(Ⅰ)求距阵M;
(Ⅱ)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C的参数方程为
x=2+t
y=t+1
(t
为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为p2-4pcosθ+3=0.
(Ⅰ)求曲线C的普通方程和曲线P的直角坐标方程;
(Ⅱ)设曲线C和曲线P的交点为A、B,求|AB|.
(3)选修4-5:不等式选讲
已知函数f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求实数t的取值范围;
(Ⅱ)记t的最大值为T,若正实数a、b、c满足a2+b2+c2=T,求a+2b+c的最大值.

查看答案和解析>>

科目:高中数学 来源:2011届福建厦门双十中学高三考前热身理数试卷 题型:解答题

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4-2:矩阵与变换
已知矩阵,向量
(I)求矩阵的特征值和特征向量
(II)求的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)(本小题满分7分)选修4-5:不等式选讲
(Ⅰ)已知:a、b、;w.w.w.k.s.5.u.c.o.m   
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建厦门双十中学高三考前热身理数试卷 题型:解答题

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4-2:矩阵与变换

已知矩阵,向量

    (I)求矩阵的特征值和特征向量

(II)求的值.

 

 

(2)(本小题满分7分)选修4-4:坐标系与参数方程

在平面直角坐标系xOy中,已知曲线C的参数方程为.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为

(Ⅰ)求直线l的直角坐标方程;

(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.

 

 

(3)(本小题满分7分)选修4-5:不等式选讲

(Ⅰ)已知:a、b、;www.7caiedu.cn   

(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.

 

 

 

查看答案和解析>>


同步练习册答案