精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin(ωx+φ),条件P:“f(0)=0”;条件Q:“f(x)为奇函数”,则P是Q的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件
相关习题

科目:高中数学 来源:孝感模拟 题型:单选题

设函数f(x)=sin(ωx+φ),条件P:“f(0)=0”;条件Q:“f(x)为奇函数”,则P是Q的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省孝感市高三第二次统考数学试卷(文科)(解析版) 题型:选择题

设函数f(x)=sin(ωx+φ),条件P:“f(0)=0”;条件Q:“f(x)为奇函数”,则P是Q的( )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设函数f(x)=sin(ωx+φ),条件P:“f(0)=0”;条件Q:“f(x)为奇函数”,则P是Q的


  1. A.
    充要条件
  2. B.
    充分不必要条件
  3. C.
    必要不充分条件
  4. D.
    既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)设函数f(x)=sin(ωx+φ),条件P:“f(0)=0”;条件Q:“f(x)为奇函数”,则P是Q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②设p,q为简单命题,若“p∨q”为假命题,则“?p∧?q为真命题”;
③“a>2”是“a>5”的必要条件;
④若函数f(x)=(x+1)(x+a)为偶函数,则a=-1;
⑤将函数y=sin(2x)(x∈R)的图象向右平移
π
8
个单位即可得到函数y=sin(2x-
π
8
)(x∈R)
的图象;
其中所有正确的说法序号是
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源:2011年江西省新余一中高考数学一模试卷(文科)(解析版) 题型:解答题

有下列命题:
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②设p,q为简单命题,若“p∨q”为假命题,则“¬p∧¬q为真命题”;
③“a>2”是“a>5”的必要条件;
④若函数f(x)=(x+1)(x+a)为偶函数,则a=-1;
⑤将函数y=sin(2x)(x∈R)的图象向右平移个单位即可得到函数的图象;
其中所有正确的说法序号是   

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①“sinα>sinβ”是“α>β”的既不充分又不必要条件;
②若f(x)在某区间M上为增函数,则对于该区间上的任意x,总有f′(x)>0;
③设空间任意一点O和不共线三点A、B、C,若点P满足向量关系
OP
=x
OA
+y
OB
+z
OC
,则P、A、B、C四点共面;
④若取值为x1,x2,x3…xn的频率分别为p1,p2,p3…pn,则其平均数为
n
i=1
xipi

其中所有真命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①“sinα>sinβ”是“α>β”的既不充分又不必要条件;
②若f(x)在某区间M上为增函数,则对于该区间上的任意x,总有f′(x)>0;
③设空间任意一点O和不共线三点A、B、C,若点P满足向量关系
OP
=x
OA
+y
OB
+z
OC
,则P、A、B、C四点共面;
④若取值为x1,x2,x3…xn的频率分别为p1,p2,p3…pn,则其平均数为
n


i=1
xipi

其中所有真命题的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中a2+b2≠0且ω>0.设f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在区间[0,2π]内的解集;
(2)若点A是过点(-1,1)且法向量为
n
=(-1,1)
的直线l上的动点.当x∈R时,设函数f(x)的值域为集合M,不等式x2+mx<0的解集为集合P.若P⊆M恒成立,求实数m的最大值;
(3)根据本题条件我们可以知道,函数f(x)的性质取决于变量a、b和ω的值.当x∈R时,试写出一个条件,使得函数f(x)满足“图象关于点(
π
3
,0)
对称,且在x=
π
6
处f(x)取得最小值”.

查看答案和解析>>

科目:高中数学 来源:2010年上海市普陀区高考数学二模试卷 (理科)(解析版) 题型:解答题

在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中a2+b2≠0且ω>0.设
(1)若,b=1,ω=2,求方程f(x)=1在区间[0,2π]内的解集;
(2)若点A是过点(-1,1)且法向量为的直线l上的动点.当x∈R时,设函数f(x)的值域为集合M,不等式x2+mx<0的解集为集合P.若P⊆M恒成立,求实数m的最大值;
(3)根据本题条件我们可以知道,函数f(x)的性质取决于变量a、b和ω的值.当x∈R时,试写出一个条件,使得函数f(x)满足“图象关于点对称,且在处f(x)取得最小值”.

查看答案和解析>>


同步练习册答案