精英家教网 > 高中数学 > 题目详情
已知偶函数f(x)满足条件:当x∈R时,恒有f(x+2)=f(x),且0≤x≤1时,有f′(x)>0,则f(
98
19
),f(
101
17
),f(
106
15
)的大小关系是(  )?
A.f(
98
19
)>f(
101
17
)>?f(
106
15
B.f(
106
15
)>f(
98
19
)>?f(
101
17
C.f(
101
17
)>f(
98
19
)>f(
106
15
D.f(
106
15
)>f(
101
17
)>f(
98
19
相关习题

科目:高中数学 来源: 题型:

已知偶函数f(x)满足条件:当x∈R时,恒有f(x+2)=f(x),且0≤x≤1时,有f′(x)>0,则f(
98
19
),f(
101
17
),f(
106
15
)的大小关系是(  )
A、f(
98
19
)>f(
101
17
)>f(
106
15
B、f(
106
15
)>f(
98
19
)>f(
101
17
C、f(
101
17
)>f(
98
19
)>f(
106
15
D、f(
106
15
)>f(
101
17
)>f(
98
19

查看答案和解析>>

科目:高中数学 来源:杭州一模 题型:单选题

已知偶函数f(x)满足条件:当x∈R时,恒有f(x+2)=f(x),且0≤x≤1时,有f′(x)>0,则f(
98
19
),f(
101
17
),f(
106
15
)的大小关系是(  )
A.f(
98
19
)>f(
101
17
)>f(
106
15
B.f(
106
15
)>f(
98
19
)>f(
101
17
C.f(
101
17
)>f(
98
19
)>f(
106
15
D.f(
106
15
)>f(
101
17
)>f(
98
19

查看答案和解析>>

科目:高中数学 来源:2008年浙江省杭州市高考数学一模试卷(理科)(解析版) 题型:选择题

已知偶函数f(x)满足条件:当x∈R时,恒有f(x+2)=f(x),且0≤x≤1时,有f′(x)>0,则f(),f(),f()的大小关系是( )
A.f()>f()>f(
B.f()>f()>f(
C.f()>f()>f(
D.f()>f()>f(

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知偶函数f(x)满足条件:当x∈R时,恒有f(x+2)=f(x),且0≤x≤1时,有f′(x)>0,则f(数学公式),f(数学公式),f(数学公式)的大小关系是


  1. A.
    f(数学公式)>f(数学公式)>f(数学公式
  2. B.
    f(数学公式)>f(数学公式)>f(数学公式
  3. C.
    f(数学公式)>f(数学公式)>f(数学公式
  4. D.
    f(数学公式)>f(数学公式)>f(数学公式

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)同时满足如下三个条件:①定义域为[-1,1];②f(x)是偶函数;③x∈[-1,0]时,f(x)=
1
e2x
-
a
ex
,其中a∈R.
(Ⅰ)求f(x)在[0,1]上的解析式,并求出函数f(x)的最大值;
(Ⅱ)当a≠0,x∈[0,1]时,函数g(x)=(
x2
a
+x-2-
3
a
)[e2x-f(x)]
,若g(x)的图象恒在直线y=e上方,求实数a的取值范围(其中e为自然对数的底数,e=2.71828…).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域关于原点对称,且满足以下三个条件:
①x1、x2、x1-x2是定义域中的数时,有f(x1-x2)=
f(x1)f(x2)+1f(x2)-f(x1)

②f(a)=-1(a>0,a是定义域中的一个数);
③当0<x<2a时,f(x)<0.
(1)判断f(x1-x2)与f(x2-x1)之间的关系,并推断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,2a)上的单调性,并证明;
(3)当函数f(x)的定义域为(-4a,0)∪(0,4a)时,
 ①求f(2a)的值;②求不等式f(x-4)<0的解集.

查看答案和解析>>

科目:高中数学 来源:2010年广东省广州市广雅中学高考数学模拟试卷(文科)(解析版) 题型:解答题

已知函数f(x)同时满足如下三个条件:①定义域为[-1,1];②f(x)是偶函数;③x∈[-1,0]时,,其中a∈R.
(Ⅰ)求f(x)在[0,1]上的解析式,并求出函数f(x)的最大值;
(Ⅱ)当a≠0,x∈[0,1]时,函数,若g(x)的图象恒在直线y=e上方,求实数a的取值范围(其中e为自然对数的底数,e=2.71828…).

查看答案和解析>>

科目:高中数学 来源:2009-2010学年辽宁省沈阳市东北育才学校高三(下)5月月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)同时满足如下三个条件:①定义域为[-1,1];②f(x)是偶函数;③x∈[-1,0]时,,其中a∈R.
(Ⅰ)求f(x)在[0,1]上的解析式,并求出函数f(x)的最大值;
(Ⅱ)当a≠0,x∈[0,1]时,函数,若g(x)的图象恒在直线y=e上方,求实数a的取值范围(其中e为自然对数的底数,e=2.71828…).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)同时满足如下三个条件:①定义域为[-1,1];②f(x)是偶函数;③x∈[-1,0]时,f(x)=
1
e2x
-
a
ex
,其中a∈R.
(Ⅰ)求f(x)在[0,1]上的解析式,并求出函数f(x)的最大值;
(Ⅱ)当a≠0,x∈[0,1]时,函数g(x)=(
x2
a
+x-2-
3
a
)[e2x-f(x)]
,若g(x)的图象恒在直线y=e上方,求实数a的取值范围(其中e为自然对数的底数,e=2.71828…).

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省黄冈中学高一(上)期中数学试卷(解析版) 题型:解答题

已知函数f(x)的定义域关于原点对称,且满足以下三个条件:
①x1、x2、x1-x2是定义域中的数时,有
②f(a)=-1(a>0,a是定义域中的一个数);
③当0<x<2a时,f(x)<0.
(1)判断f(x1-x2)与f(x2-x1)之间的关系,并推断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,2a)上的单调性,并证明;
(3)当函数f(x)的定义域为(-4a,0)∪(0,4a)时,
 ①求f(2a)的值;②求不等式f(x-4)<0的解集.

查看答案和解析>>


同步练习册答案