精英家教网 > 小学数学 > 题目详情
如图由三个边长为1的正方形组成,中间的正方形的两个顶点分别是另外两个正方形的中心,那么阴影部分的面积是多少?
分析:由图意可知:阴影部分由两个完全相同的三角形组成,求出一个的面积,就能求出阴影部分的总面积;又因三角形的底等于正方形的对角线的长度加上正方形的边长,三角形的高等于对角线的长度减去正方形的边长再除以2,也就是说阴影部分的面积=(正方形的对角线的长度+正方形边长)×(正方形的对角线的长度-正方形的边长)÷2÷2×2,据此代入数据即可求解.
解答:解:正方形对角线长为
12+12
=
2

则一个阴影三角形的底为
2
+1,高为(
2
-1)÷2.
阴影面积:(
2
+1)×(
2
-1)÷2÷2×2
=(2-1)÷2
=
1
2

答:阴影部分的面积是
1
2
点评:解答此题的关键是弄清楚:阴影部分的底和高的长度,利用三角形的面积公式即可求解,难度较大.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:

由三个边长是1的正方形拼成如图所示的左右对称图形,以图中正方形的10个顶点为顶点可得到许多不同的三角形,那么,在这些三角形中,面积为1的三角形共有
17
17
个.(面积为1的三角形的三条边中至少有-条边是水平或垂直的.)

查看答案和解析>>

科目:小学数学 来源: 题型:

如图,一个边长是5厘米的正方体,是由125个边长为1厘米的小正方体组成的.P为上底面ABCD的对角线的交点.分别用通过P、E、F三点的平面,P、F、G三点的平面,P、H、G三点的平面,P、H、E三点的平面把正方体切开,则最后剩下的立体图形中包含
20
20
个完整的边长是1厘米的小正方体.

查看答案和解析>>

科目:小学数学 来源: 题型:

由四个边长为1的正方形拼成如图所示的左右对称图形,以图中正方形的14个顶点为顶点可得到许多不同的三角形,那么,在这些三角形中,面积为1的三角形共有
44
44
个.(面积为1的三角形的三条边中,至少有一条边是水平或垂直的)

查看答案和解析>>

同步练习册答案