精英家教网 > 小学数学 > 题目详情
如图,AD、BE、CF把△ABC分成六个小三角形,其中四个小三角形的面积已在图上标明,试求△ABC的面积.(单位:平方厘米)
分析:设未知的两个小三角形的面积为x和y,根据三角形的面积和底边长成比例,列出二元一次方程,解得x,y,进而求出△ABC的面积.
解答:解:设S△BOF=x,S△AOE=y.
因为S△BDO:S△CDO=S△BDA:S△CDA.所以40:30=(40+84+x):(30+35+y),
整理得4y-3x=112①
又因为S△CEO:S△AEO=S△CEB:S△AEB所以35:y=(35+30+40):(84+x+y)
整理得70y-35x=2940②
由①、②解得x=56,y=70;
又因为S△ABC=S△AFO+S△AEO+S△BFO+S△BDO+S△CEO+S△AEO
所以S△ABC=84+70+56+40+30+35=315(平方厘米).
点评:本题主要考查三角形的面积的知识点,根据三角形的面积与底边长成比例进行解答,此题的解答方法需要同学们熟练掌握.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:

如图所示,已知AD=CE,AD和BE平行,F是CD和AE的中点,则梯形ABCD的面积
(  )三角形ABE的面积.

查看答案和解析>>

科目:小学数学 来源: 题型:

(2012?郑州模拟)如图,中等边三角形ABC的边长为6厘米,其中DE分别是各边的中点,分别以A、B、C为圆心,AD、BE、CF为半径画弧,中间阴影部分的周长是
9.42厘米
9.42厘米

查看答案和解析>>

科目:小学数学 来源: 题型:

在平面内,旋转变换试指某一个图形绕一个定点按顺时针或逆时针旋转一定的角度而得到新位置图形的一种变换.

活动一:如图①,在Rt△ABC中,D为斜边AB上的一点,AD=2,BD=1,且四边形DECF是正方形,在求阴影部分面积时,小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图②所示),小明一眼就看到答案,请你写出阴影部分的面积
1
1

活动二:如图③,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,过点A作AE⊥BC,垂足为点E,小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADG(如图④所示),则:
(1)四边形AECG是怎样的特殊四边形?答:
正方形
正方形

(2)AE的长是
4
4

活动三:如图⑤,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC绕点B逆时针旋转90°得到线段BE,连接AE.若AB=2,DC=4,求△ABE的面积.

查看答案和解析>>

科目:小学数学 来源: 题型:

精英家教网如图,正方形的ABCD的边长是1厘米,现在依次以A、B、C、D为圆心,以AD、BE、CF、DG为半径画扇形,得到图中阴影部分.则阴影部分的面积为
 
,图形外周长为
 
.(π取3.14,写出计算过程)

查看答案和解析>>

科目:小学数学 来源: 题型:解答题

在平面内,旋转变换试指某一个图形绕一个定点按顺时针或逆时针旋转一定的角度而得到新位置图形的一种变换.

活动一:如图①,在Rt△ABC中,D为斜边AB上的一点,AD=2,BD=1,且四边形DECF是正方形,在求阴影部分面积时,小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图②所示),小明一眼就看到答案,请你写出阴影部分的面积______.
活动二:如图③,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,过点A作AE⊥BC,垂足为点E,小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADG(如图④所示),则:
(1)四边形AECG是怎样的特殊四边形?答:______;
(2)AE的长是______.
活动三:如图⑤,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC绕点B逆时针旋转90°得到线段BE,连接AE.若AB=2,DC=4,求△ABE的面积.

查看答案和解析>>

同步练习册答案