精英家教网 > 初中数学 > 题目详情

【题目】为了丰富同学们的课余生活,某学校举行亲近大自然户外活动,现随机抽取了部分学生进行主题为你最想去的景点是?的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.

请解答下列问题:

1)本次调查的样本容量是

2)补全条形统计图;

3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.

【答案】(160;(2)作图见解析;(31380

【解析】试题分析:(1)由A的人数及其人数占被调查人数的百分比可得;

2)根据各项目人数之和等于总数可得C选项的人数;

3)用样本中最想去湿地公园的学生人数占被调查人数的比例乘总人数即可.

试题解析:(1)本次调查的样本容量是15÷25%=60

2)选择C的人数为:60﹣15﹣10﹣12=23(人),

补全条形图如图:

3×3600=1380(人).

答:估计该校最想去湿地公园的学生人数约由1380人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线:y=-x(x3)0≤x≤3),记为C1,它与x轴交于点OA1

C1绕点A1旋转180°C2,交x 轴于点A2C2绕点A2旋转180°C3,交x 轴于点A3

……

如此进行下去,直至得C13

P1m)在C1上,则m =_________

P37n)在第13段抛物线C13上,则n =_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理(解析)

提出问题:如图1,在四边形ABCD中,PAD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:

APAD(如图2)

APAD,△ABP和△ABD的高相等,

SABPSABD

PDADAPAD,△CDP和△CDA的高相等

SCDPSCDA

SPBCS四边形ABCDSABPSCDPS四边形ABCDSABDSCDA

S四边形ABCD(S四边形ABCDSDBC)(S四边形ABCDSABC)SDBC+SABC.

(1)APAD时,探求SPBCSABCSDBC之间的关系式并证明;

(2)APAD时,SPBCSABCSDBC之间的关系式为:   

(3)一般地,当APAD(n表示正整数)时,探求SPBCSABCSDBC之间的关系为:   

(4)APAD(01)时,SPBCSABCSDBC之间的关系式为:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MNPQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,AC=4cm,BC=3cm,点P由B出发沿BA的方向向点A匀速运动,速度为1cm/s,同时点Q由A出发沿AC的方向向点C匀速运动,速度为2cm/s,连接PQ,设运动的时间为t(s),其中0<t<2,解答下列问题:

(1)当t为何值时,以P、Q、A为顶点的三角形与ABC相似?

(2)是否存在某一时刻t,线段PQ将ABC的面积分成1:2两部分?若存在,求出此时的t,若不存在,请说明理由;

(3)点P、Q在运动的过程中,CPQ能否成为等腰三角形?若能,请求出此时t的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】年冬季越野赛在滨河学校操场举行,某运动员从起点学校东门出发,途径湿地公园,沿比赛路线跑回终点学校东门.沿该运动员离开起点的路程(千米)与跑步时间(时间)之间的函数关系如图所示,其中从起点到湿地公园的平均速度是千米/分钟,用时分钟,根据图像提供的信息,解答下列问题:

)求图中的值;

)组委会在距离起点千米处设立一个拍摄点,该运动员从第一次过点到第二次过点所用的时间为分钟.

①求所在直线的函数解析式;

②该运动员跑完全程用时多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′

1)在给定方格纸中画出平移后的△A′B′C′

2)画出AB边上的中线CD

3)画出BC边上的高线AE

4)点为方格纸上的格点(异于点),若,则图中的格点共有 个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE

1)求证:BE=CE

2)求BEC的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角三角形ABC中,DAB的中点,EF分别是ACBC.上的点(E不与端点AC重合),且连接EF并取EF的中点O,连接DO并延长至点G,使,连接DEDFGEGF

(1)求证:四边形EDFG是正方形;

(2)直接写出当点E在什么位置时,四边形EDFG的面积最小?最小值是多少?

查看答案和解析>>

同步练习册答案