【题目】如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.
(1)求证:BE=CE.
(2)求∠BEC的度数
【答案】(1)证明见解析;(2)30°
【解析】
试题分析:(1)由正方形和等边三角形的性质得出AB=AE,DC=DE,∠BAE=150°,∠CDE=150°,可证ΔBAE≌ΔCDE,即可证出BE=CE;
(2)由(1)知:∠AEB=∠CED=15°,从而可求∠BEC的度数.
试题解析:(1)证明:∵四边形ABCD为正方形
∴AB=AD=CD,∠BAD=∠ ADC=90°
∵三角形ADE为正三角形
∴ AE=AD=DE,∠EAD=∠EDA=60°
∴∠BAE=∠CDE=150°
∴ΔBAE≌ΔCDE
∴BE=CE
(2)∵AB=AD, AD=AE,
∴AB=AE
∴∠ABE=∠AEB
又 ∵∠BAE=150° ∴∠ABE=∠AEB=15°
同理:∠CED=15°
∴∠BEC=600-15°×2=30°
科目:初中数学 来源: 题型:
【题目】为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.
请解答下列问题:
(1)本次调查的样本容量是 ;
(2)补全条形统计图;
(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是正方形ABCD的对角线BD上一点(点P不与点B、D重合),PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③仅有当∠DAP=45°或67.5°时,△APD是等腰三角形;④∠PFE=∠BAP:⑤PD=EC.其中有正确有( )个.
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的对角线交于点点,分别在,上()且,,的延长线交于点,,的延长线交于点,连接.
(1)求证:.
(2)若正方形的边长为4,为的中点,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年4月23日是第24个世界读书日.为了弘扬中华传统文化,我县某学校举办了“让读书成为习惯,让书香飘满校园”主题活动,为此特为每个班级订购了一批新的图书.初一(1)班订购老舍文集4套和四大名著2套,总费用为480元;初一(2)班订购老舍文集2套和四大名著3套,总费用为520元.
(1)求老舍文集和四大名著每套各是多少元?
(2)学校准备再购买老舍文集和四大名著共20套,总费用不超过1720元,购买老舍文集的数量不超过四大名著的3倍,问学校有几种购买方案,请你设计出来.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com