【题目】如图,在中,,平分,于点交于点,延长至使,连接.
(1)证明:四边形是矩形;
(2)当时,猜想线段、、的数量关系,并证明.
【答案】(1)详见解析;(2),证明详见解析
【解析】
(1)根据平行四边形的性质得到AD∥BC,AD=BC,进而求出AD=FH,再根据平行四边形的判定得出四边形AFHD是平形四边形,最后根据矩形的判定得出即可得到答案;
(2)根据平行四边形的性质得到AB∥CD,求出∠1=∠3,推出AE=AD,再根据正方形的判定和性质得出AD=DH,求出△DAG≌△DHM,最后根据全等三角形的性质得出∠2=∠3=∠HDM,∠AGD=∠M,求出∠M=∠CDM即可得到答案.
(1)∵四边形是平行四边形
∴,(平行四边形对边平行且相等),
∵
∴,
∴(等量替换),
∴四边形是平行四边形(对边平行且相等的四边形是平行四边形),
∵∴,
∴平行四边形是矩形;
(2)猜想:
证明:如图,延长至使,连接,
∵四边形是平行四边形,
∴∴,
∵平分∴∴∴,
∵∴,
∴四边形是正方形,
∴,,
在△DAG和△DHM中,
∴,
∴,,
∴,
∵,
∴,
∴,
∴,
∵,,,
∴;
科目:初中数学 来源: 题型:
【题目】阅读理(解析)
提出问题:如图1,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
当AP=AD时(如图2):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD,
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等
∴S△CDP=S△CDA,
∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA,
=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.
(1)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系式并证明;
(2)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为: ;
(3)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系为: ;
(4)当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.
(1)在给定方格纸中画出平移后的△A′B′C′;
(2)画出AB边上的中线CD
(3)画出BC边上的高线AE
(4)点为方格纸上的格点(异于点),若,则图中的格点共有 个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.
(1)求∠APB的度数;
(2)如果AD=5 cm,AP=8 cm,求△APB的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中, , ∥轴, .
⑴.求点的坐标:
⑵.四边形的面积四边形;
⑶. 在轴上是否存在点,使△ = 四边形;若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角三角形ABC中,D是AB的中点,E,F分别是AC,BC.上的点(点E不与端点A,C重合),且连接EF并取EF的中点O,连接DO并延长至点G,使,连接DE,DF,GE,GF
(1)求证:四边形EDFG是正方形;
(2)直接写出当点E在什么位置时,四边形EDFG的面积最小?最小值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com