【题目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)
(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.
【答案】(1)=;(2)成立,证明见解析;(3)135°.
【解析】
试题分析:(1)∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∵AB=AC,∴∠B=∠C.∴∠ADE=∠AED,∴AD=EA,∴BD=CE;(2)根据旋转可得△DAB≌△EAC,从而DB=CE;(3)将△CPB绕点C旋转90°得△CEA,连接PE,可得PE=,根据PE2+AE2=AP2,推出△PEA是直角三角形.进而可求得∠BPC的度数.
试题解析:(1)=;(2)成立,原因如下:由旋转可得AD=AE,∠DAB=∠CAE,又∵AB=AC,∴△DAB≌△EAC,∴DB=CE.(3)将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,
∴∠CEP=∠CPE=45°,在Rt△PCE中,,在△PEA中,PE2=()2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形.∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA,
∴∠BPC=∠CEA=135°.
科目:初中数学 来源: 题型:
【题目】已知抛物线与x轴交于A(6,0)、B(,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.
(1)求此抛物线的解析式;
(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.
①当点F为M′O′的中点时,求t的值;
②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列关于分式方程增根的说法正确的是( )
A.使所有的分母的值都为零的解是增根
B.分式方程的解为零就是增根
C.使分子的值为零的解就是增根
D.使最简公分母的值为零的解是增根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016山东潍坊第24题)如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.
(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;
(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.
(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;
(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场以每件120元的价格购进了某种品牌的衬衫600件,并以每件140元的价格销售了500件,由于天气原因,商场准备采取促销措施,问剩下的衬衫促销价格定为每件多少元时,销售完这批衬衫恰好盈利10800元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AC=BC,BD⊥BC于B,点E在 BC上,CE=BD,DC、AE交于点F.试问DC与AE有何数量与位置关系?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com