如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:
①双曲线的解析式为y=(x>0);②E点的坐标是(5,8);③sin∠COA=;④AC+OB=12.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
B【考点】反比例函数综合题.
【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标;由sin∠COA=可求出∠COA的正弦值;根据A、C两点的坐标可求出AC的长,由OB•AC=160即可求出OB的长.
【解答】解:过点C作CF⊥x轴于点F,
∵OB•AC=160,A点的坐标为(10,0),
∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,
∴CF===8,
在Rt△OCF中,
∵OC=10,CF=8,
∴OF===6,
∴C(6,8),
∵点D时线段AC的中点,
∴D点坐标为(,),即(8,4),
∵双曲线y=(x>0)经过D点,
∴4=,即k=32,
∴双曲线的解析式为:y=(x>0),故①错误;
∵CF=8,
∴直线CB的解析式为y=8,
∴,解得x=4,y=8,
∴E点坐标为(4,8),故②错误;
∵CF=8,OC=10,
∴sin∠COA===,故③正确;
∵A(10,0),C(6,8),
∴AC==4,
∵OB•AC=160,
∴OB===8,
∴AC+OB=4+8=12,故④正确.
故选:B.
【点评】本题考查的是反比例函数综合题,涉及到菱形的性质及反比例函数的性质、锐角三角函数的定义等相关知识,难度适中.
科目:初中数学 来源: 题型:
点P(x,y)先向左平移2个单位,再向上平移3个单位得到P′,则点P′的坐标为( )
A.(x﹣2,y+3) B.(x+2,y﹣3) C.(x﹣3,y+2) D.(x+3,y﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:
①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.
其中正确结论的序号是( )
A.①③ B.①②③④ C.②③④ D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,小俊在A处利用高为1.8米的测角仪AB测得楼EF顶部E的仰角为30°,然后前进12米到达C处,又测得楼顶E的仰角为60°,求楼EF的高度.(结果精确到0.1米)(参考数据: =1.414, =1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
某校开展了“我最喜爱的老师”评选活动.确定如下评选方案:有学生和教师代表对4名候选教师进行投票,每票选1名候选教师,每位候选教师得到的教师票数的5倍与学生票数的和作为该教师的总票数.以下是根据学生和教师代表投票结果绘制的统计表和条形统计图(不完整).
学生投票结果统计表
候选教师 | 丁老师 | 俞老师 | 李老师 | 陈老师 |
得票数 | 460 | 200 | 140 | 300 |
(1)若共有25位教师代表参加投票,则李老师得到的教师票数是多少?请补全条形统计图.(画在答案卷相对应的图上)
(2)丁老师与李老师得到的学生总票数是600,且丁老师得到的学生票数是李老师得到的学生票数的3倍多40票,求丁老师与李老师得到的学生票数分别是多少?
(3)在(1)、(2)的条件下,若总得票数较高的2名教师推选到市参评,你认为推选到市里的是两位老师?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com