精英家教网 > 初中数学 > 题目详情

【题目】已知正反比例函数的图像交于两点,过第二象限的点的横坐标为在第四象限

(1)求这两个函数解析式;

(2)求这两个函数图像的交点坐标;

(3)若点在坐标轴上联结写出当时的点坐标

【答案】(1)y=-,y=(2)A(-2,3),B(2,-3)(3)(2,0)或(-2,0)或(0,3)或(0,-3)

【解析】

(1)先根据题意得出,再结合,再利用待定系数法求解可得;(2)联立正反比例函数解析式得到方程组,解之即可得交点坐标;(3)由在坐标轴上分点轴上和轴上两种情况,根据利用割补法求解可得.

解:(1)如图,

∵点的横坐标为-2,且轴,

则点

代入得:,则正比例函数的解析式为

代入得:,则反比例函数的解析式为

(2)

∴得:

∵点在第四象限

∴点坐标为

故答案为:.

(3)若轴上,设

解得:

点的坐标为

轴上,设

解得:

点的坐标为

综上,点的坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在ABC,∠BAC=90°,AB=AC,D为直线BC上一动点(D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.

(1)观察猜想

如图①,当点D在线段BC上时。

BCCF的位置关系为:___;

BC,CD,CF之间的数量关系为:___;(将结论直接写在横线上)

(2)数学思考

如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;

(3)拓展延伸

如图③,当点D在线段BC的延长线上时,延长BACF于点G,连接GE.若已知AB=,CD=BC,请求出GE的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC中,AB=AC,BAC=90°

(1)如图(1),CD平分∠ACBAB于点D,BECD于点E,延长BE、CA相交于点F,请猜想线段BECD的数量关系,并说明理由.

(2)如图(2),点FBC上,∠BFE=ACB,BEFE于点E,ABFE交于点D,FHACABH,延长FH、BE相交于点G,求证:BE=FD;

(3)如图(3),点FBC延长线上,∠BFE=ACB,BEFE于点E,FEBA延长线于点D,请你直接写出线段BEFD的数量关系(不需要证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,折叠长方形(四个角都是直角)的一边AD使点D落在BC边的点F处,已知AB=DC=8cm,AD=BC=10cm,求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了平面直角坐标系及格点AOB.(顶点是网格线的交点)

(1)画出将AOB沿y轴翻折得到的AOB1,则点B1的坐标为_________.

(2)画出将AOB沿射线AB1方向平移2.5个单位得到的A2O2B2,则点A2的坐标为_______.

(3)请求出AB1B2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两块等腰直角三角板△ABC△DEC如图摆放,其中∠ACB=∠DCE=90°,FDE的中点,HAE的中点,GBD的中点.

(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FHFG的数量关系为______和位置关系为______;

(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;

(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边三角形,

请你判断的形状并说明理由;

如果绕点旋转,交边于点,请你判断的周长是否发生变化?如果不变,说明理由;如果变化,说明当点在什么位置时,的周长最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若我们规定三角“”表示为:abc;方框“”表示为:(xm+yn).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:

(1)计算:= ______ ;

(2)代数式为完全平方式,则k= ______ ;

(3)解方程:=6x2+7.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,点O为坐标原点,点Ax轴负半轴上,点B、C分别在x轴、y轴正半轴上,且OB=2OA,OBOC=OCOA=2.

(1)求点C的坐标;

(2)点P从点A出发以每秒1个单位的速度沿AB向点B匀速运动,同时点Q从点B出发以每秒3个单位的速度沿BA向终点A匀速运动,当点Q到达终点A时,点P、Q均停止运动,设点P运动的时间为t(t>0)秒,线段PQ的长度为y,用含t的式子表示y,并写出相应的t的范围;

(3)在(2)的条件下,过点P作x轴的垂线PM,PM=PQ,是否存在t值使点O为PQ中点? 若存在求t值并求出此时△CMQ的面积.

查看答案和解析>>

同步练习册答案