某商场新近一批A、B两种型号的节能防近视台灯,每台进价分别为200元、170元,近两周的销售情况如下:
| 销售时段 | 销售数量 | 销售收入 | |
| A种型号 | B种型号 | ||
| 第一周 | 3台 | 5台 | 1800元 |
| 第二周 | 4台 | 10台 | 3100元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A、B两种型号的台灯的销售单价;
(2)若该商场准备用不多于5400元的金额再购进这两种型号的台灯共30台,求A种型号的台灯最多能购进多少台?
(3)在(2)的条件下,该商场销售完这30台台灯能否实现利润为1400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.
科目:初中数学 来源: 题型:
已知:如图,在□ABCD中,线段EF分别交AD、AC、BC于点E、O、F,
EF⊥AC,AO=CO.
(1)求证:△ABF≌△CDE;
(2)在本题的已知条件中,有一个条件如果去掉,并不影响(1)的证明,你认为这个多余的条件是 (直接写出这个条件).
查看答案和解析>>
科目:初中数学 来源: 题型:
据有关资料显示,2014年通过国家科技支撑计
划,遵义市获得国家级科技专项重点项目资金5533万元,将5533万用科学记数法可表示为( )
|
| A. | 5.533×108 | B. | 5.533×107 | C. | 5.533×106 | D. | 55.33×106 |
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线y=a
x2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
(1)求抛物线的解析式;
(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A、C、D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积;
(3)以AB为直径作⊙M,直线经过点E(﹣1,﹣5),并且与⊙M相切,求该直线的解析式.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是 .
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com