【题目】如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)
(1)数轴上点B对应的数是______.
(2)经过几秒,点M、点N分别到原点O的距离相等?
【答案】(1)30;(2)经过2秒或10秒,点M、点N分别到原点O的距离相等
【解析】试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;
(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.
试题解析:(1)∵OB=3OA=30,
∴B对应的数是30.
(2)设经过x秒,点M、点N分别到原点O的距离相等,
此时点M对应的数为3x-10,点N对应的数为2x.
①点M、点N在点O两侧,则
10-3x=2x,
解得x=2;
②点M、点N重合,则,
3x-10=2x,
解得x=10.
所以经过2秒或10秒,点M、点N分别到原点O的距离相等.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,经过的点A(﹣4,0)、点B(6,0)的 抛物线与y轴相交于点C(0,m),连接BC.
(1)若△OAC∽△OCB,请求出m的值;
(2)当m=3时,试求出抛物线的解析式;
(3)在(2)的条件下,若P为抛物线上位于x轴上方的一动点,以P、A、B、C为顶点的四边形面积记作S,当S取何值时,相应的点P有且只有3个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点
(1)求抛物线的解析式;
(2)求抛物线与x轴的交点坐标,与y轴交点坐标;
(3)画出这条抛物线;
(4)根据图象回答:①当x取什么值时,y>0,y<0?②当x取什么值时,y的值随x的增大而减小?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】6月5日是世界环境日,为了普及环保知识,增强环保意识,某市第一中学举行了“环保知识竞赛”,参赛人数为1 000人.为了了解本次竞赛的成绩情况,学校团委从中抽取部分学生的成绩(满分为100分,最少为50分,得分取整数)进行统计,并绘制出不完整的频数分布表和不完整的频数分布直方图如下:
分组 | 频数 | 所占百分比 |
49.5~59.5 | 8 | 8% |
59.5~69.5 | __ __ | 12% |
69.5~79.5 | 20 | __ __ |
79.5~89.5 | 32 | __ __ |
89.5~100.5 | __ __ | 28% |
(1)补全频数分布表和频数分布直方图;
(2)若成绩在80分以上为优秀,求这次参赛的学生中成绩为优秀的约有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
(1)求抛物线的解析式;
(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A,C,D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校随机抽取部分学生,就”对自己做错题进行整理、分析、改正”这一学习习惯进行问卷调查,选项为:很少、有时、常常、总是每人只能选一项;调查数据进行了整理,绘制成部分统计图如图:
请根据图中信息,解答下列问题:
该调查的总人数为______,______,______,“常常”对应扇形的圆心角的度数为______;
请你补全条形统计图;
若该校有2000名学生,请你估计其中”总是”对错题进行整理、分析、改正的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).
(1)连接 ;
(2)猜想: = ;
(3)证明:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点G,D,C在直线a上,点E,F,A,B在直线b上,若a∥b,Rt△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.
(1)若AC=1,BC=.求证:AD2+CF2=BE2;
(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com