精英家教网 > 初中数学 > 题目详情

【题目】如图,点GDC在直线a上,点EFAB在直线b上,若abRtGEF从如图所示的位置出发,沿直线b向右匀速运动,直到EGBC重合.运动过程中GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是(  )

A. B. C. D.

【答案】B

【解析】根据题意可得:

①F. A重合之前没有重叠面积,

F. A重叠之后到EA重叠前,AE=a,EF被重叠部分的长度为(ta),则重叠部分面积为S= (ta)(ta)tanEFG= (ta)tanEFG

∴是二次函数图象;

③△EFG完全进入且FB重合之前,重叠部分的面积是三角形的面积,不变,

FB重合之后,重叠部分的面积等于S=SEFG (ta)tanEFG,符合二次函数图象,直至最后重叠部分的面积为0.

综上所述,只有B选项图形符合。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等边ABC的边长是2,D,E分别为ABAC的中点,延长BC至点F,使CFBC连接CD和EF.

(1)求证:DE=CF;

(2)求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)

(1)数轴上点B对应的数是______.

(2)经过几秒,点M、点N分别到原点O的距离相等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是按规律摆放在墙角的一些小正方体,从上往下分别记为第一层,第二层,第三层,…,第n层.

(1)第三层有________个小正方体;

(2)从第四层至第六层(含第四层和第六层)共有________个小正方体;

(3)第n层有________个小正方体;

(4)若每个小正方体边长为a分米,共摆放了n层,则要将摆放的小正方体能看到的表面部分涂上防锈漆,则防锈漆的总面积为________平方分米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:

3﹣=3×

(﹣)﹣6=(﹣)×6;

(﹣0.5)﹣(﹣1)=(﹣0.5)×(﹣1)

根据上面这些等式反映的规律,解答下列问题:

(1)上面等式反映的规律用文字语言可以描述如下:存在两个有理数,使得这两个有理数的差等于

   

(2)若满足上述规律的两个有理数中有一个数是,求另一个有理数;

(3)若这两个有理数用字母a、b表示,则上面等式反映的规律用字母表示为   

(4)(3)中的关系式中,字母a、b是否需要满足一定的条件?若需要,直接写出字母a、b应满足的条件;若不需要,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A是双曲线y= (x>0)上一点,过点A作AB∥y轴,交双曲线y=﹣ (x>0)于点B,过点B作BC⊥AB交y轴于点C,连接AC,则△ABC的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,圆O的直径为10 cm,两条直径ABCD相交成90°角,∠AOE=50°,OF是∠BOE的平分线.

(1)求圆心角∠COF的度数;

(2)求扇形COF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一架方梯AB长25米,如图所示,斜靠在一面上:

(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?

(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,与反比例函数y= 的图象在第一象限内的交点为M,若△OBM的面积为1.

(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由;
(3)x轴上是否存在点Q,使△QBM∽△OAM?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案