【题目】如图,在中,,为边上的中线,过点作于点,过点作平行线,交的延长线于点,在延长线上截得,连结、.若,,则四边形的面积等于________.
【答案】
【解析】
先证明四边形CGFD是菱形,由CD∥BF,D为AB中点,E为AF的中点,求得EF的长,设GF=x,则BF=11-x,AB=2x,在Rt△ABF中利用勾股定理列出方程,解方程可求出x的值,根据菱形的面积公式即可求得四边形的面积.
∵∠ACB=90°,CD为AB边上的中线,
∴AD=BD=CD,
∵BG∥CD,
∴AF⊥BG,
∴AD=BD=DF,
∴DF=CD,
∵FG=CD,
∴四边形CGFD为菱形,
∵CD∥BF,D为AB中点,
∴E为AF的中点,
∴EF=AF=4,
设GF=x,则BF=11-x,AB=2x,
∵在Rt△ABF中,∠BFA=90°,
∴AF2+BF2=AB2,即(11-x)2+82=(2x)2,
解得:x=5或x= (舍去),
∴菱形CGFD的面积为:5×4=20,
故答案为:20.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC、BD交于点O,E为AB的中点,G为BC延长线上一点,射线EO与∠ACG的角平分线交于点F,若AB=8,BC=6,则线段EF的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,锐角中,,若想找一点P,使得与互补,甲、乙、丙三人作法分别如下:
甲:以B为圆心,AB长为半径画弧交AC于P点,则P即为所求;
乙:分别以B,C为圆心,AB,AC长为半径画弧交于P点,则P即为所求;
丙:作BC的垂直平分线和的平分线,两线交于P点,则P即为所求.
对于甲、乙、丙三人的作法,下列叙述正确的是
A. 三人皆正确B. 甲、丙正确,乙错误
C. 甲正确,乙、丙错误D. 甲错误,乙、丙正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
(1)求证:AB=CD;
(2)若AB=CF,∠B=40°,求∠D的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形的边长为厘米,对角线上的两个动点,.点从点,点从点同时出发,沿对角线以厘米/秒的相同速度运动,过作交的直角边于,过作交的直角边于,连接,.设、、、围成的图形面积为,,,围成的图形面积为(这里规定:线段的面积为到达,到达停止.若的运动时间为秒,解答下列问题:
如图,判断四边形是什么四边形,并证明;
当时,求为何值时,;
若是与的和,试用的代数式表示.(如图为备用图)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.
(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.
(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AB=12,AC⊥AB,BD⊥AB,AC=BD=8。点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由B点向点D运动。它们的运动时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;
(2)如图2,将图1中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变。设点Q的运动速度为每秒x个单位,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x,t的值;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com