分析 延长DE交⊙O于F,连接CF;由CD⊥DE,可知CF必为⊙O的直径.连接AF、BF,由于四边形ACBF的对角线相等且互相平分,因此四边形ACBF是矩形.可得AC=BF,∠EBF=90°;易证得△CED∽△FEB,可得出关于EB、CD、DE、BF的比例关系式,将AC=BF代入上式,可得出本题所证的结论.
解答
证明:延长DE,交⊙O于F;连接CF,AF、BF;
由于CD⊥DF,即∠CDF=90°,
因此CF必为⊙O的直径.
∵OA=OB=OC=OF,
∴四边形AFBC为矩形.
∴BF=AC,∠CBF=90°.
∴∠CDE=∠CBF=90°.
∵∠CED=∠FEB,
∴△CED∽△FEB,
∴EB:ED=BF:CD.
∴EB:ED=AC:CD,
∴$\frac{AC}{BE}=\frac{CD}{ED}$.
点评 本题综合考查了圆周角定理、矩形的判定和性质、相似三角形的判定和性质,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | x=y | B. | b+ax=b+ay | C. | ax-c=ay-c | D. | $\frac{ax}{5}$=$\frac{ay}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | ||||
| C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com