精英家教网 > 初中数学 > 题目详情
15.已知:如图,AB是△ABC的外接圆O的直径,D为⊙O上一点,且DE⊥CD,交BC于点E.求证:$\frac{AC}{BE}=\frac{CD}{ED}$.

分析 延长DE交⊙O于F,连接CF;由CD⊥DE,可知CF必为⊙O的直径.连接AF、BF,由于四边形ACBF的对角线相等且互相平分,因此四边形ACBF是矩形.可得AC=BF,∠EBF=90°;易证得△CED∽△FEB,可得出关于EB、CD、DE、BF的比例关系式,将AC=BF代入上式,可得出本题所证的结论.

解答 证明:延长DE,交⊙O于F;连接CF,AF、BF;
由于CD⊥DF,即∠CDF=90°,
因此CF必为⊙O的直径.
∵OA=OB=OC=OF,
∴四边形AFBC为矩形.
∴BF=AC,∠CBF=90°.
∴∠CDE=∠CBF=90°.
∵∠CED=∠FEB,
∴△CED∽△FEB,
∴EB:ED=BF:CD.
∴EB:ED=AC:CD,
∴$\frac{AC}{BE}=\frac{CD}{ED}$.

点评 本题综合考查了圆周角定理、矩形的判定和性质、相似三角形的判定和性质,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.已知ax=ay,下列结论错误的是(  )
A.x=yB.b+ax=b+ayC.ax-c=ay-cD.$\frac{ax}{5}$=$\frac{ay}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=10,并求出此时P点的坐标;
(3)设(1)中的抛物线交y轴交于C点,在该抛物线的对称轴上是否存在点Q,使△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,二次函数y=ax2+bx+c的图象交x轴于A(-1,0),B(2,0),交y轴于C(0,-2),过A,C画直线.
(1)求二次函数的解析式;
(2)若点P是抛物线上的动点,点Q是直线y=x上的动点,请判断是否存在以P、Q、O、C为顶点的四边形为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由;
(3)在y轴右侧的点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.且△CHM∽△AOC(点C与点A对应),求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,BC=4,tanC=$\frac{4}{3}$,M为BC边的中点,且AB=AM.
(1)求边AB、AC的长;
(2)如图2,点P为线段AM上一动点(不与A、M重合),BP的延长线交边AC于点N,设MP=x,CN=y,求y关于x的函数关系式,并写出定义域;
(3)在(2)的条件下,若△BPM与△ABC相似,求$\frac{{S}_{△BPM}}{{S}_{△BNC}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,D、E分别是△ABC的边AC、AB上的点,AD=6,AB=10,BC=12,且$\frac{AE}{AC}=\frac{3}{5}$,
(1)求证:△ADE∽△ABC;   
(2)求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解分式方程:
(1)$\frac{80}{x}$=$\frac{70}{x-5}$                      
(2)$\frac{a-3}{{a}^{2}-6a+9}$=$\frac{1}{a-3}$
(3)$\frac{x}{x-2}$+$\frac{1}{2-x}$=2
(4)$\frac{2}{3x-1}$=1+$\frac{3}{6x-2}$                   
(5)$\frac{6}{{x}^{2}-1}$-$\frac{1}{x+1}$=$\frac{3}{x-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.时钟正常运转时,分针每分钟转动6°,时针每分钟转动0.5°,在运转过程中,时针与分针的夹角为y(度),运转的时间为t(min),当时间从12:00开始到12:30止,y与t之间的函数图象是下列的(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第n个图形中实心圆的个数表示为K.

(1)Kn=2(n+1)(用n表示):K100=202
(2)我们在用“☆”定义一种新运算:对于任意有理数a和正整数n.
规定a☆n=$\frac{a-{K}_{n}+|a+{K}_{n}|}{2}$,例如:(-3)☆2=$\frac{-3-{K}_{2}+|-3+{K}_{2}|}{2}$=$\frac{-3-6+|-3+6|}{2}$=-3.
①计算:(-26.6)☆10的值;
②比较:3☆n与(-3)☆n的大小.

查看答案和解析>>

同步练习册答案