精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,DAB边上一点.

1)求证:△ACE≌△BCD

2)求证:2CD2=AD2+DB2.

【答案】1)证明见解析;(2)证明见解析.

【解析】

1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=ECD=90°,则DC=EAAC=BC,∠ACB=ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=ACE,根据SAS得出△ACE≌△BCD

2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2,即2CD2=AD2+DB2

证明:(1∵△ABC△ECD都是等腰直角三角形,

∴AC=BCCD=CE

∵∠ACB=∠DCE=90°

∴∠ACE+∠ACD=∠BCD+∠ACD

∴∠ACE=∠BCD

△ACE△BCD中,

∴△AEC≌△BDCSAS);

2∵△ACB是等腰直角三角形,

∴∠B=∠BAC=45.

∵△ACE≌△BCD

∴∠B=∠CAE=45°

∴∠DAE=∠CAE+∠BAC=45°+45°=90°

∴AD2+AE2=DE2.

由(1)知AE=DB

∴AD2+DB2=DE2,即2CD2=AD2+DB2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,A(3,0)、B(a,2)、C(0,m),D(n,0),且m2+n2=4,若E为CD中点.则AB+BE的最小值为(  )

A. 3 B. 4 C. 5 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某小区有一块长为30 m,宽为24 m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480 m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,先描出点,点.

1)描出点关于轴的对称点的位置,写出的坐标

2)用尺规在轴上找一点,使的值最小(保留作图痕迹);

3)用尺规在轴上找一点,使(保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,点GBC的中点,点HAF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的ABP的面积ycm2)关于运动时间ts)的函数图象如图2,若AB=6cm,则下列四个结论中正确的个数有(  )①图1中的BC长是8cm,②图2中的M点表示第4秒时y的值为24cm2,③图1中的CD长是4cm,④图2中的N点表示第12秒时y的值为18cm2,⑤图1的总面积为72 cm2

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,直线ABy=x+by轴于点A,交x轴于点BSAOB=8

1)求点B的坐标和直线AB的函数表达式;

2)直线a垂直平分OBAB于点D,交x轴于点E,点P是直线a上一动点,且在点D的上方,设点P的纵坐标为m

①用含m的代数式表示ABP的面积;

②当SABP=6时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨,下表是去年该酒店豪华间某两天的相关记录:

旺季

淡季

未入住房间数

10

0

日总收入(元)

24 000

40 000

1)该酒店豪华间有多少间?旺季每间价格为多少元

2)今年旺季来临,豪华间的间数不变。经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间。不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分在RtABC中,BAC=,D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F

1求证:AEFDEB

2证明四边形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,∠ADB=23°,EAD上一点.将矩形沿CE折叠,点D的对应点F恰好落在BC上,CEBDH,连接HF,则∠BHF=__

查看答案和解析>>

同步练习册答案