分析 (1)直接利用垂直的定义得出∠BEC=∠BDA,进而利用AAS,得出△ABD≌△CBE;
(2)利用全等三角形的性质结合全等三角形的判定方法得出△AEF≌△CDF(ASA),进而得出答案.
解答 证明:(1)∵AD⊥BC,CE⊥AB,
∴∠BEC=∠BDA,
在△ABD和△CBE中
∵$\left\{\begin{array}{l}{∠ADB=∠CEB}\\{∠B=∠B}\\{AB=BC}\end{array}\right.$,
∴△ABD≌△CBE(AAS);
(2)∵△ABD≌△CBE,
∴BD=BE,∠A=∠C,
∴AE=DC,
在△AEF和△CDF中
∵$\left\{\begin{array}{l}{∠A=∠C}\\{AE=DC}\\{∠AEF=∠CDF}\end{array}\right.$,
∴△AEF≌△CDF(ASA),
∴EF=FD.
点评 此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com