精英家教网 > 初中数学 > 题目详情

【题目】如图所示某数学活动小组要测量山坡上的电线杆PQ的高度他们采取的方法是:先在地面上的点A处测得杆顶端点P的仰角是45°再向前走到B点测得杆顶端点P和杆底端点Q的仰角分别是60°和30°这时只需要测出AB的长度就能通过计算求出电线杆PQ的高度你同意他们的测量方案吗?若同意画出计算时的图形简要写出计算的思路不用求出具体值;若不同意提出你的测量方案并简要写出计算思路

【答案】m

【解析】

试题分析:延长PQ交直线AB于点E设测出AB的长度为m米在直角APE和直角BPE中根据三角函数利用PE表示出AE和BE根据AB=AE-BE即可列出方程求得PE的值再在直角BQE中利用三角函数求得QE的长则PQ的长度即可求解

试题解析:同意他们的测量方案;

延长PQ交直线AB于点E

设测出AB的长度为m米

在直角APE中A=45°

则AE=PE;

∵∠PBE=60°

∴∠BPE=30°

在直角BPE中BE=PE

AB=AE-BE=m

则PE-PE=m

解得:PE=m

则BE=m-m=m

在直角BEQ中QE=BE=m=m

PQ=PE-QE=m-m=m

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的坐标分别为A(﹣35),B(﹣42),C(﹣14)(注:每个方格的边长均为1个单位长度).

1)将△ABC沿着水平方向向右平移6个单位得△A1B1C1,请画出△A1B1C1

2)作出将△ABC关于O点成中心对称的△A2B2C2,并直接写出的坐标;

3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将两块直角三角形的一条直角边重合叠放,已知AC=BC=+1D=60°,则两条斜边的交点E到直角边BC的距离是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠A=30°,D为AB上一点,且AD:DB=1:3,DE⊥AC于点E,连接BE,则tan∠CBE的值等于(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△CDE的顶点C点坐标为C(1,﹣2),点D的横坐标为,将△CDE绕点C旋转到△CBO,点D的对应点Bx轴的另一个交点为点A.

(1)图中,∠OCE等于∠_____;

(2)求抛物线的解析式;

(3)抛物线上是否存在点P,使SPAE=SCDE?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知α是锐角,且点A(,a),B(sinα+cosα,b), C(-m2+2m-2,c)都在二次函数y=-x2+x+3的图象上,那么a、b、c的大小关系是   (

A. a<b<c B. a<c<b C. b<c<a D. c<b<a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一座人行天桥的示意图,天桥的高度是10米,CBDB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据: ≈1.414 ≈1.732

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点P的坐标为(0,2),直线y=与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为( )

A.3 B.4 C.5 D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点ABC的坐标分别为A(-1,3),B(-3,1),C(-1,1).请解答下列问题:

(1)画出ABC关于y轴对称的A1B1C1,并写出B1的坐标

(2)画出A1B1C1绕点C1顺时针旋转90°后得到的A2B2C2

(3)求出点A1走过的路径长.

查看答案和解析>>

同步练习册答案