【题目】如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与y轴交于点C,与反比例函数y=的图象交于A,B两点,过点B作BE⊥x轴于点E,已知A点坐标是(2,4),BE=2.
(1)求一次函数与反比例函数的表达式;
(2)连接OA、OB,求△AOB的面积.
【答案】(1)y=x+2, y=;(2)6.
【解析】
(1)根据点A坐标将反比例函数表达式求出,再利用反比例函数求出点B的坐标,最后根据点A和点B坐标用待定系数法求出一次函数表达式;
(2)求出点C坐标,再根据S△AOB=S△BOC+S△AOC可得结果.
解:(1)∵点A(2,4)在反比例函数y=的图象上,
∴将A(2,4)代入y=中,可得4=,解得m=8,即反比例函数表达式为y=.
∵BE⊥x轴于点E,且BE=2,即点B纵坐标为-2,而点B在反比例函数y=的图象上,
∴将y=-2代入y=,
得-2=,解得x=-4.
即点B坐标为(-4,-2),
∵点A(2,4),B(-4,-2)在一次函数y=kx+b的图象上,
∴将A(2,4),B(-4,-2)代入y=kx+b中,得解得
∴一次函数表达式为y=x+2,反比例函数表达式为y=;
(2)∵点C为一次函数y=x+2的图象与y轴的交点,
∴令x=0,得y=2,即C(0,2).
S△AOB=S△BOC+S△AOC
=·OC·|xB|+·OC·|xA|
=·OC·|xA-xB|
=×2×6
=6.
科目:初中数学 来源: 题型:
【题目】学习完反比例函数的图象及性质后,老师给冋学们留了这样一道作业题:“已知点(﹣1,m)和点(2,n)都在反比例函数y=(k<0)的图象上,试比较m和n的大小?”以下是彬彬同学的解题过程:
解:∵在反比例函数y=中,k<0 ①
∴反比例函数y=,y随x的增大而增大 ②
∵ ③
∴ ④
(1)彬彬的解答过程在第 步开始出错,出错的原因是 .请你帮助彬彬写出正确的解答过程.
(2)若点(﹣6,p)、点(1,q)和点(3,z)也在反比例函数y=(k<0)的图象上,直接比较p、q、z的大小 (结果用“<”连结)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,求证四边形FFG是平行四边形.根据以下思路可以证明四边形EFGH是平行四边形:
(1)根据上述思路,请你写出完整的证明过程;
(2)如图,已知,分别以AB、AC为边,在BC同侧作等边三角形ABD和等边三角形ACE,连接CD,BF.可通过证明△________≌△________,得到;
(3)如图③,点P是四边形ABCD内一点,且满足,,,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想四边形EFGH的形状,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,是边上任意一点(点与点、不重合),以为一直角边在的外部作,,连接,.
(1)在图中,若,,现将图中的绕着点顺时针旋转锐角,得到图,那么线段,之间有怎样的关系,写出结论,并说明理由;
(2)在图中,若,,,,现将图中的绕着点顺时针旋转锐角,得到图,连接、.
①求证:;
②计算:的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中抛物线交轴于点,交轴于点,两点横坐标为和,点纵坐标为.
求抛物线的解析式;
动点在第四象限且在抛物线上,当面积最大时,求点坐标,并求面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:折纸中的数学
问题背景
在数学活动课上,老师首先将平行四边形纸片ABCD按如图①所示方式折叠,使点C与点A重合,点D落到D′处,折痕为EF.这时同学们很快证得:△AEF是等腰三角形.接下来各学习小组也动手操作起来,请你解决他们提出的问题.
操作发现
(1) “争先”小组将矩形纸片ABCD按上述方式折叠,如图②,发现重叠部分△AEF恰好是等边三角形,求矩形ABCD的长、宽之比是多少?
实践探究
(2)“励志”小组将矩形纸片ABCD沿EF折叠,如图③,使B点落在AD边上的B′处;沿B′G折叠,使D点落在D′处,且B′D′过F点.试探究四边形EFGB′是什么特殊四边形?
(3)再探究:在图③中连接BB′,试判断并证明△BB′G的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.
(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;
(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).
(1)求抛物线的函数表达式;
(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;
(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=(k为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,3),点B与点A关于y=x成轴对称,tan∠AOC=.
(1)求k的值;
(2)直接写出点B的坐标,并求直线AB的解析式;
(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com