【题目】如图,在平面直角坐标系中抛物线交轴于点,交轴于点,两点横坐标为和,点纵坐标为.
求抛物线的解析式;
动点在第四象限且在抛物线上,当面积最大时,求点坐标,并求面积的最大值.
【答案】(1)y=x2﹣x﹣4;(2)S有最大值,D(,﹣5)
【解析】
(1)根据抛物线与x轴的交点的横坐标为-1和3,可用交点式将此函数表示成y=a(x+1)(x﹣3),再将它与y轴的交点(0,-4)代入这个解析式,求出a的值后即可得到此抛物线的解析式;(2)过D作垂直x轴的直线交BC于点N,这样可以将分成和,利用,在确定D点和N点的坐标后表示出DN的长,便能计算得到,从而可以确定面积最大值,进而易求出点D的坐标.
解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),
将C(0,4)代入,
得﹣3a=﹣4,解得:a=,
∴抛物线的表达式为:y=x2﹣x﹣4;
(2)过点D作y轴的平行线交BC于点N,
由B、C的坐标可得直线BC的表达式为:y=x﹣4,
设点D(x,x2﹣x﹣4),点N(x,x﹣4),
S△BCD=×OB×ND=3×(x﹣4﹣x2+x+4)=﹣2x2+6x,
∵﹣2<0,故S有最大值,
此时,x=,点D(,﹣5);
科目:初中数学 来源: 题型:
【题目】二次函数的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有( )
A. 3个 B. 4个 C. 5个 D. 6个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 ( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点,,,连接,得到四边形.点在边上,连接,将边沿折叠,点的对应点为点,若点到四边形较长两对边的距离之比为.则点的坐标为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有( ).
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与y轴交于点C,与反比例函数y=的图象交于A,B两点,过点B作BE⊥x轴于点E,已知A点坐标是(2,4),BE=2.
(1)求一次函数与反比例函数的表达式;
(2)连接OA、OB,求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线y=﹣x+6分别与x轴、y轴交于点A,B.当点P在线段AB(点P不与A,B重合)上运动时,在坐标系内存在一点N,使得以O,B,P,N为顶点的四边形为菱形.请直接写出N点坐标_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△OAB中,∠AOB=90°,AO=2,BO=4.将△OAB绕顶点O按顺时针方向旋转到△OA1B1处,此时线段OB1与AB的交点D恰好为线段AB的中点,线段A1B1与OA交于点E,则图中阴影部分的面积__.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com