精英家教网 > 初中数学 > 题目详情
13.如图,抛物线y=x2+bx+5与x轴交于点A和点B(5,0),与y轴交于点C,抛物线的顶点为点P.
(1)求抛物线的表达式并写出顶点P的坐标;
(2)在x轴上方的抛物线上有一点D,若∠ABD=∠ABP,试求出点D的坐标;
(3)设在直线BC下方的抛物线上有一点Q,若S△BCQ=15,试求出点Q的坐标.

分析 (1)直接把B点坐标代入y=x2+bx+5中求出b的值即可得到抛物线解析式,然后把一般式配成顶点式得到P点坐标;
(2)直线BD交y轴于点E,作PH⊥x轴于点H,如图,先确定B(5,0),再通过证明△OBE∽△HBP,利用相似比计算出OE=10,则E(0,10),于是利用待定系数法可确定直线BE的解析式为y=-2x+10,然后解方程组$\left\{\begin{array}{l}{y={x}^{2}-6x+5}\\{y=-2x+10}\end{array}\right.$得点D的坐标;
(3)过点Q作y轴的平行线交BC于点P,如图,先确定C点坐标,再利用待定系数法求出直线BC的解析式为y=-x+5,设Q(t,t2-6t+5)(0<t<5),则P(t,-t+5),则可表示出PQ=-t2+5t,利用三角形面积公式得到$\frac{1}{2}$•5•(-t2+5t)=15,然后解方程求出t即可得到点Q的坐标.

解答 解:(1)把B(5,0)代入y=x2+bx+5得25+5b+5=0,解得b=-6,
∴抛物线解析式为y=x2-6x+5,
∵y=x2-6x+5=(x-3)2-4,
∴顶点P的坐标为(3,-4);
(2)直线BD交y轴于点E,作PH⊥x轴于点H,如图,
当y=0时,x2-6x+5=0,解得x1=1,x2=5,则B(5,0),
∵P(3,-4),
∴PH=4,OH=3,
∴BH=5-3=2,
∵∠ABD=∠ABP,
∴△OBE∽△HBP,
∴$\frac{OE}{PH}$=$\frac{OB}{BH}$,即$\frac{OE}{4}$=$\frac{5}{2}$,解得OE=10,
∴E(0,10),
设直线BE的解析式为y=kx+b,
把E(0,10),B(5,0)代入得$\left\{\begin{array}{l}{b=10}\\{5k+b=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-2}\\{b=10}\end{array}\right.$,
∴直线BE的解析式为y=-2x+10,
解方程组$\left\{\begin{array}{l}{y={x}^{2}-6x+5}\\{y=-2x+10}\end{array}\right.$得$\left\{\begin{array}{l}{x=5}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=12}\end{array}\right.$,
∴点D的坐标为(-1,12);
(3)过点Q作y轴的平行线交BC于点P,如图,
当x=0时,y=x2-6x+5=5,则C(0,5),
设直线BC的解析式为y=mx+n,
把B(5,0),C(0,5)代入得$\left\{\begin{array}{l}{5m+n=0}\\{n=5}\end{array}\right.$,解得$\left\{\begin{array}{l}{m=-1}\\{n=5}\end{array}\right.$,
∴直线BC的解析式为y=-x+5,
设Q(t,t2-6t+5)(0<t<5),则P(t,-t+5),
∴PQ=-t+5-(t2-6t+5)=-t2+5t,
∴△BCQ的面积=$\frac{1}{2}$•5•PQ,
即$\frac{1}{2}$•5•(-t2+5t)=15,解得t1=2,t2=3,
∴点Q的坐标为(2,-3)或(3,-4).

点评 本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;能应用相似比计算线段的长;理解坐标与图形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.若2m=3,2n=4,则23m+2n等于(  )
A.432B.$\frac{9}{16}$C.11D.1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列计算正确的是(  )
A.$\sqrt{3}$×$\sqrt{2}$=6B.$\sqrt{12}$-$\sqrt{3}$=$\sqrt{3}$C.$\sqrt{3}$+$\sqrt{2}$=$\sqrt{5}$D.$\sqrt{8}$÷$\sqrt{2}$=4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某班九年级第二学期数学一共进行四次考试,小丽和小明的成绩如表所示:
学生单元测验1期中考试单元测验2期未考试
小丽85759585
小明65958595
(1)请你通过计算这四次考试成绩的方差,比较谁的成绩比较稳定?
(2)若老师计算学生的学期总评成绩按照如下的标准:单元测验1占10%,期中考试占30%,单元测验2占10%,期末考试成绩占50%.请你通过计算,比较谁的学期总评成绩高?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.点C是直线AB上的一点,且线段AB=6cm,BC=2cm,点D为线段AB的中点,那么DC=1或5cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.要反映一天的气温变化情况用折线统计图表示比较合适.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.方程x(x-4)=0的根是(  )
A.x1=0,x2=4B.x1=0,x2=-4C.x1=1,x2=4D.x1=1,x2=-4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知:如图,四边形ABCD是正方形,G是BC上的一点,DE⊥AG,BF⊥AG,垂足分别为E、F.
(1)求证:△ABF≌△DAE;
(2)求证:DE=EF+FB.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,将纸片△ABC沿DE折叠,点A落在△ABC的形内,已知∠1+∠2=102°,则∠A的大小等于51度.

查看答案和解析>>

同步练习册答案