分析 根据勾股定理求的a2+b2=25,即a2+b2=(a+b)2-2ab①,然后根据根与系数的关系求的a+b=m-1②ab=m+4③;最后由①②③联立方程组,即可求得m的值,继而可得答案.
解答 解:∵斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b,
∴a2+b2=25,
又∵a2+b2=(a+b)2-2ab,
∴(a+b)2-2ab=25,①
∵a、b是关于x的方程x2-(m-1)x+m+4=0的两个实数根,
∴a+b=m-1,②
ab=m+4,③
由①②③,解得
m=-4,或m=8;
当m=-4时,ab=0,
∴a=0或b=0,(不合题意)
∴m=8;
则Rt△ABC的面积为$\frac{1}{2}$ab=$\frac{1}{2}$×(8+4)=6,
故答案为:6.
点评 本题综合考查了根与系数的关系、勾股定理的应用.解答此题时,需注意作为三角形的两边a、b均不为零这一条件.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | |a|一定是正数 | |
B. | 在同一平面内,过直线外或直线上一点,有且只有一条直线垂直于已知直线 | |
C. | 两个无理数的和仍是无理数 | |
D. | 如果两个角互补,那么一个是锐角,一个是钝角 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -2 | B. | 0 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x2+y2=5 | B. | $\frac{1}{x}$+$\frac{1}{y}$=2 | C. | x+y+z=3 | D. | $\frac{x}{2}$-$\frac{y}{3}$=$\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com