精英家教网 > 初中数学 > 题目详情
14.当我们利用2种不同的方法计算同一图形的面积时,可以得到一个等式.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2
(1)由图2,可得等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.
(2)利用(1)中所得到的结论,解决下面的问题:
     已知 a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可用来验证等式:2a2+5ab+2b2=(2a+b)(a+2b);
(4)小明用2 张边长为a 的正方形,3 张边长为b的正方形,5 张边长分别为a、b 的长方形纸片重新拼出一个长方形,那么该长方形较长的一条边长为2a+3b.

分析 (1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;
(2)根据(1)中结果,求出所求式子的值即可;
(3)根据已知等式,做出相应图形,如图所示;
(4)根据题意列出关系式,即可确定出长方形较长的边.

解答 解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;
(2)∵a+b+c=11,ab+bc+ac=38,
∴a2+b2+c2=(a+b+c)2-2(ab+ac+bc)=121-76=45;
(3)如图所示:

(4)根据题意得:2a2+5ab+3b2=(2a+3b)(a+b),
则较长的一边为2a+3b.
故答案为:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(4)2a+3b

点评 此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.如图,AB是⊙O直径,C是AB延长线上一点,CD是⊙O的切线,D为切点,∠A=30°,AB=2cm,则CD的长为(  )
A.2cmB.$\frac{3}{2}$cmC.$\sqrt{3}$cmD.$\frac{\sqrt{3}}{2}$cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解不等式:$\frac{x+2}{2}$≥$\frac{x-1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若一个锐角为(5x-15),则x的取值范围是3<x<21.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知直线m∥n,A、B是直线m上的任意两点,C、D是直线n上的任意两点,连AD、BC,∠ABC与∠ADC的平分线相交于点E,若∠BAD=80°.
(1)求∠EDC的度数;
(2)若∠BCD=30°,试求∠BED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.因式分解:
(1)a-6ab+9ab2
(2)x3-4x2-12x
(3)x2(x-y)+y2(y-x)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上任一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,解答下列问题:
(1)如果AB=AC,∠BAC=90°.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为垂直,数量关系为相等.
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)小明通过尝试发现如图丁:如果AB≠AC,∠BAC≠90°,只要∠ACB=45°,CF与BD的位置关系就不变(点C、F重合除外),你同意他的说法吗?并请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为-1,3.与y轴负半轴交于点C,在下面五个结论中:
①2a-b=0;②a+b+c>0;③c=-3a;④只有当a=$\frac{1}{2}$时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a值可以有四个.
其中正确的结论有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD,直线l:y=kx+3.
(1)当直线l经过D点时,求点D的坐标及k的值;
(2)当直线l与正方形有两个交点时,直接写出k的取值范围.

查看答案和解析>>

同步练习册答案