精英家教网 > 初中数学 > 题目详情

【题目】如图1,在一条可以折叠的数轴上,点AB分别表示数-94.

(1)AB两点之间的距离为________.

(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是________.

(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,AB两点相距4个单位长度?

【答案】(1)13(2)-2(3)t= 9秒或17.

【解析】

1)根据数轴上两点的距离公式即可求解;
2)设点C表示的数是x,分别表示出ACBC,再根据AC-BC=1列出方程解答即可;

3)运动t秒后,可知点A表示的数为-9+3t,点B表示的数为4+2t,再根据AB的距离为4,可得方程,解方程即可.

解:(1AB=4--9=13

2)设点C表示的数是x
AC=x--9=x+9BC=4-x
A落在点B的右边1个单位,

AC-BC=1,

AC-BC=x+9-4-x=2x+5=1
解得:x=-2
∴点C表示的数是-2
故答案为:-2

(3) 设运动t秒后,点A与点B相距4个单位,

由题意可知点A表示的数为-9+3t,点B表示的数为4+2t


解得t=179.

答:运动9秒或17秒后,点A与点B相距4个单位.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于任意有理数a,b,定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.

(1)求(﹣2)⊙3的值;

(2)对于任意有理数m,n,请你重新定义一种运算“”,使得5⊕3=20,写出你定义的运算:m⊕n=   (用含m,n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一个内角为90°,且对角线相等的四边形称为准矩形.

(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=   

②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是   ;(整点指横坐标、纵坐标都为整数的点)

(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;

(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒

当t = 4时,求线段PQ的长度

(2)当t为何值时,△PCQ是等腰三角形?

(3)当t为何值时,△PCQ的面积等于16cm2

(4)当t为何值时,△PCQ∽△ACB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人分别从AB两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:

AB之间的距离为1200m; 乙行走的速度是甲的1.5倍;b=960; ④ a=34.

以上结论正确的有(  )

A. ①② B. ①②③ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知整数,…满足下列条件:,…,依此类推,则的值为( )

A.0B.-1C.1009D.-1009

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC为⊙O的内接三角形,BC=24 , ,点D为弧BC上一动点,CE垂直直线OD于点E, 当点D由B点沿弧BC运动到点C时,点E经过的路径长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条.如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54,则∠B=( )

A. 54 B. 60 C. 72 D. 66

查看答案和解析>>

同步练习册答案