【题目】已知函数y=4x2﹣4x+m的图象与x轴的交点坐标为(x1,0),(x2,0),且(x1+x2)(4x12﹣5x1﹣x2)=8,则该函数的最小值为( )
A. 2 B. ﹣2 C. 10 D. ﹣10
【答案】D
【解析】
根据抛物线与x轴的交点问题得到x1与x2是4x2-4x+m=0的两根,由一元二次方程的解得4x12-4x1+m=0,由根与系数的关系得到x1+x2=1,x1x2=,则4x12=4x1-m,接着由(x1+x2)(4x12-5x1-x2)=8得到(x1+x2)(-m-x1-x2)=8,则1(-m-1)=8,解得m=-9,所以抛物线解析式为y=4x2-4x-9,然后根据二次函数的性质求函数的最小值.
∵函数y=4x2-4x+m的图象与x轴的交点坐标为(x1,0),(x2,0),
∴x1与x2是4x2-4x+m=0的两根,
∴4x12-4x1+m=0,x1+x2=1,x1x2=,
∴4x12=4x1-m,
∵(x1+x2)(4x12-5x1-x2)=8,
∴(x1+x2)(4x1-m-5x1-x2)=8,
即(x1+x2)(-m-x1-x2)=8,
∴1(-m-1)=8,解得m=-9,
∴抛物线解析式为y=4x2-4x-9,
∵y=4(x-)2-10,
∴该函数的最小值为-10.
故选D.
科目:初中数学 来源: 题型:
【题目】二次函数的部分图像如图所示,图像过点,对称轴为直线,下列结论:(1);(2);(3)若点、点、点在该函数图像上,则;(4)若方程的两根为和,且,则.其中正确结论的序号是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=﹣x+1的图象与反比例函数的图象交点的纵坐标为2,当﹣3<x<﹣1时,反比例函数中y的取值范围是( )
A. B. C. D. ﹣3<y<﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是 .(填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如题图,已知A(-4,2),B(n,-4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.
(1)求m,n的值;
(2)求一次函数的关系式;、
(3)结合图象直接写出一次函数小于反比例函数的x的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A、B两地相距4km,上午8:00时,亮亮从A地步行到B地,8:20时芳芳从B地出发骑自行车到A地,亮亮和芳芳两人离A地的距离S(km)与亮亮所用时间t(min)之间的函数关系如图所示,芳芳到达A地时间为( )
A. 8:30 B. 8:35 C. 8:40 D. 8:45
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.
(1)在平行四边形、矩形、菱形、正方形中,一定是“十字形”的有 .
(2)如图1,在四边形ABCD中,AB=AD,且CB=CD
①证明:四边形ABCD是“十字形”;
②若AB=2.∠BAD=60°,∠BCD=90°,求四边形ABCD的面积.
(3)如图2.A、B、C、D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,若∠ADB﹣∠CDB=∠ABD﹣∠CBD.满足AC+BD=3,求线段OE的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com