精英家教网 > 初中数学 > 题目详情

【题目】已知函数y=4x2﹣4x+m的图象与x轴的交点坐标为(x1,0),(x2,0),且(x1+x2)(4x12﹣5x1﹣x2)=8,则该函数的最小值为(  )

A. 2 B. ﹣2 C. 10 D. ﹣10

【答案】D

【解析】

根据抛物线与x轴的交点问题得到x1x24x2-4x+m=0的两根,由一元二次方程的解得4x12-4x1+m=0,由根与系数的关系得到x1+x2=1,x1x2=,则4x12=4x1-m,接着由(x1+x2)(4x12-5x1-x2)=8得到(x1+x2)(-m-x1-x2)=8,则1(-m-1)=8,解得m=-9,所以抛物线解析式为y=4x2-4x-9,然后根据二次函数的性质求函数的最小值.

∵函数y=4x2-4x+m的图象与x轴的交点坐标为(x1,0),(x2,0),

x1x24x2-4x+m=0的两根,

4x12-4x1+m=0,x1+x2=1,x1x2=

4x12=4x1-m,

(x1+x2)(4x12-5x1-x2)=8,

(x1+x2)(4x1-m-5x1-x2)=8,

即(x1+x2)(-m-x1-x2)=8,

1(-m-1)=8,解得m=-9,

∴抛物线解析式为y=4x2-4x-9,

y=4(x-2-10,

∴该函数的最小值为-10.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数的部分图像如图所示,图像过点,对称轴为直线,下列结论:(1);(2);(3)若点、点、点在该函数图像上,则;(4)若方程的两根为,且,则.其中正确结论的序号是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=﹣x+1的图象与反比例函数的图象交点的纵坐标为2,当﹣3<x<﹣1反比例函数y的取值范围是(  )

A. B. C. D. ﹣3<y<﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=2,点E在边AD上,ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQBD交BE于点Q,连接QD.设PD=x,PQD的面积为y,则能表示y与x函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:

①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是 .(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如题图,已知A-42),Bn-4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.

1)求mn的值;

2)求一次函数的关系式;、

3)结合图象直接写出一次函数小于反比例函数的x的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB两地相距4km,上午800时,亮亮从A地步行到B地,820时芳芳从B地出发骑自行车到A地,亮亮和芳芳两人离A地的距离Skm)与亮亮所用时间tmin)之间的函数关系如图所示,芳芳到达A地时间为(

A. 830 B. 835 C. 840 D. 845

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们不妨约定:对角线互相垂直的凸四边形叫做十字形”.

(1)在平行四边形、矩形、菱形、正方形中,一定是十字形的有   

(2)如图1,在四边形ABCD中,ABAD,且CBCD

①证明:四边形ABCD十字形”;

②若AB=2.BAD=60°,BCD=90°,求四边形ABCD的面积.

(3)如图2.ABCD是半径为1的⊙O上按逆时针方向排列的四个动点,ACBD交于点E,若∠ADBCDBABDCBD.满足AC+BD=3,求线段OE的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.

查看答案和解析>>

同步练习册答案