精英家教网 > 初中数学 > 题目详情

【题目】⊙O△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).

1)如图1AC=BC

2)如图2,直线l⊙O相切于点P,且l∥BC

【答案】1)作图见试题解析;(2)作图见试题解析.

【解析】

试题(1)过点C作直径CD,由于AC=BC,弧AC=BC,根据垂径定理的推理得CD垂直平分AB,所以CD△ABC分成面积相等的两部分;

2)连结PO并延长交BCE,过点AE作弦AD,由于直线l⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE△ABC分成面积相等的两部分.

试题解析:(1)如图1,直径CD为所求;

2)如图2,弦AD为所求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.

1)求小黄出发0.5小时时,离家的距离;

2)求出AB段的图象的函数解析式;

3)小黄出发1.5小时时,离目的地还有多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球试验,每次摸出一个球,放回、搅匀,下表是活动进行中的一组统计数据,

摸球的次数n

100

150

200

500

800

1000

摸到黑球的次数m

23

31

60

130

203

251

摸到黑球的频率

0.230

0.231

0.300

0.260

0.254

袋中白球的个数约为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AB⊙O的直径,CD是弦,且AB⊥CD于点E,连接ACOCBC

1)求证:∠ACO∠BCD

2)若EB8cmCD24cm,求⊙O的面积.(结果保留π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AB是⊙O的直径,AMBN是⊙O的两条切线,DC分别在AMBN上,DC切⊙O于点E,连接ODOCBEAEBEOC相交于点PAEOD相交于点Q,已知AD=4,BC=9,以下结论:

①⊙O的半径为ODBEPB=tanCEP=

其中正确结论有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=1AD=2MCD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+3经过点 B﹣10),C23),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t

1)求抛物线的表达式;

2)过点My轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)

3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;

4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AB为⊙O的一条弦,以AB为直角边作等腰直角ABC,直线AC恰好是⊙O的切线,点D为⊙O上的一点,连接DADBDC,若DA3DB4,则DC的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,AC、DC为弦,ACD=60°,P为AB延长线上的点,APD=30°.

(1)求证:DP是O的切线;

(2)若O的半径为3cm,求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案