精英家教网 > 初中数学 > 题目详情

【题目】如图,,点D、EBC边上的两点,且,连接EF、BF则下列结论:,其中正确的有()个.

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;

△AED≌△AEFAF=AD,,得∠FAB=∠CAD,AB=AC, 利用SAS证明,判定②正确

先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;

先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,判定④正确.

解:①∵∠DAF=90°,∠DAE=45°,

∴∠FAE=∠DAF-∠DAE=45°.

在△AED与△AEF中,

∴△AED≌△AEF(SAS),①正确;

②∵△AED≌△AEF,

∴AF=AD,

,

∴∠FAB=∠CAD,

∵AB=AC,

,②正确

③∵∠BAC=∠DAF=90°,

∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.

在△ACD与△ABF中,

∴△ACD≌△ABF(SAS),

∴CD=BF,

由①知△AED≌△AEF,

∴DE=EF.

在△BEF中,∵BE+BF>EF,

∴BE+DC>DE,③正确;

④由③知△ACD≌△ABF,

∴∠C=∠ABF=45°,

∵∠ABE=45°,

∴∠EBF=∠ABE+∠ABF=90°.④正确.

故答案为D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.
(1)如图1,若点F与点A重合,求证:AC=BC;

(2)若∠DAF=∠DBA,
①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;

②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将一副直角三角板的顶点叠合在一起,记为点O(C=30°,A=45°).

(1)当∠AOC=45°时,求∠DOB的度数;

(2)请探究∠AOC和∠DOB之间满足的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD右侧作△ADE,使AD=AE,DAE=BAC,连接CE.

(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=_______度;

(2)如图2如果∠BAC=60°,则∠BCE=______度;

(3)设∠BAC=BCE=

①如图3,当点D在线段BC上移动,则之间有怎样的数量关系?请说明理由;

②当点D在直线BC上移动,请直接写出之样的数量关系,不用证明。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BDAC DEFAC FAMD=AGF1=2=35°

1)求∠GFC的度数

2)求证:DMBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某村计划对总长为1800m的道路进行改造,安排甲、乙两个工程队完成已知甲队每天能完成的道路长度是乙队每天能完成的2倍,并且在独立完成长为400m的道路时,甲队比乙队少用4天.

求甲、乙两工程队每天能完成道路的长度分别是多少m?

若村委每天需付给甲队的道路改造费用为万元,乙队为万元,要使这次的道路改造费用不超过8万元,至少应安排甲队工作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点C在直线AB上,AC=8cm,BC=6cm,点M、N分别是AC、BC的中点,求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算或解方程

(1)﹣14+(﹣5)2×(﹣)+|0.8﹣1|

(2)﹣1.53×0.75+1.53×+×1.53

(3)

(4)

查看答案和解析>>

同步练习册答案