精英家教网 > 初中数学 > 题目详情

【题目】在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.
(1)如图1,若点F与点A重合,求证:AC=BC;

(2)若∠DAF=∠DBA,
①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;

②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.

【答案】
(1)

解:由旋转得,∠BAC=∠BAD,

∵DF⊥AC,

∴∠CAD=90°,

∴∠BAC=∠BAD=45°,

∵∠ACB=90°,

∴∠ABC=45°,

∴AC=CB


(2)

解:①由旋转得,AD=AB,

∴∠ABD=∠ADB,

∵∠DAF=∠ABD,

∴∠DAF=∠ADB,

∴AF∥BD,

∴∠BAC=∠ABD,

∵∠ABD=∠FAD

由旋转得,∠BAC=∠BAD,

∴∠FAD=∠BAC=∠BAD= ×180°=60°,

由旋转得,AB=AD,

∴△ABD是等边三角形,

∴AD=BD,

在△AFD和△BED中,

∴△AFD≌△BED,

∴AF=BE,

②如图,

由旋转得,∠BAC=∠BAD,

∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,

由旋转得,AD=AB,

∴∠ABD=∠ADB=2∠BAD,

∵∠BAD+∠ABD+∠ADB=180°,

∴∠BAD+2∠BAD+2∠BAD=180°,

∴∠BAD=36°,

设BD=y,作BG平分∠ABD,

∴∠BAD=∠GBD=36°

∴AG=BG=BD=y,

∴DG=AD﹣AG=AD﹣BG=AD﹣BD,

∵∠BDG=∠ADB,

∴△BDG∽△ADB,

= ﹣1,即( 2 ﹣1=0,

∵∠FAD=∠EBD,∠AFD=∠BED,

∴△AFD∽△BED,

∴AF= = x


【解析】(1)由旋转得到∠BAC=∠BAD,而DF⊥AC,从而得出∠ABC=45°,最后判断出△ABC是等腰直角三角形;(2)①由旋转得到∠BAC=∠BAD,再根据∠DAF=∠DBA,从而求出∠FAD=∠BAC=∠BAD=60°,最后判定△AFD≌△BED,即可;②根据题意画出图形,先求出角度,得到△ABD是顶角为36°的等腰三角形,再用相似求出, ,最后判断出△AFD∽△BED,代入即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,在折叠,使AD落在对角线BD上,得折痕DG,若AB=2,BC=1,求AG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.
(1)用尺规补全图形(保留作图痕迹,不写作法);
(2)求证:BC与⊙O相切;
(3)当AD= ,∠CAD=30°时,求劣弧AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时血液中含药量最高,达到每毫升6微克,接着就逐步衰减,10小时后血液中含药量为每毫升3微克,每毫升血液中含药量(微克)随时间(小时)的变化如图所示,那么成年人规定剂量服药后:

(1)yx之间的函数关系式.

(2)如果每毫升血液中含药量在4微克或4微克以上时,治疗疾病才是有效的,那么这个有效时

间是多长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,O在直线MN,∠AOB=90°,OC平分∠MOB.

(1)若∠AOC=则∠BOC=_______,∠AOM=_______,∠BON=_________

(2)若∠AOC=∠BON=_______(用含有的式子表示);

(3)将∠AOB绕着点O顺时针转到图2的位置,其他条件不变若∠AOC=(为钝角),求∠BON的度数(用含的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若点A(﹣1,2),B(2,﹣3)在直线y=kx+b上,则函数y= 的图象在( )
A.第一、三象限
B.第一、二象限
C.第二、四象限
D.第二、三象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD,AD=9,AB=6,若点G、H、M、N分别在AB、CD、AD、BC上,线段MN与GH交于点K.若∠GKM=45°,NM=3 ,则GH=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,DEF分别为ABBCCA上的点,且

(1)求证:

(2),求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,点D、EBC边上的两点,且,连接EF、BF则下列结论:,其中正确的有()个.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案