【题目】如图,已知矩形ABCD,AD=9,AB=6,若点G、H、M、N分别在AB、CD、AD、BC上,线段MN与GH交于点K.若∠GKM=45°,NM=3 ,则GH= .
【答案】3
【解析】解:如图,过点A作AE∥GH交CD于E,作AF∥MN交BC于F,
则AF=MN=3 ,AE=GH,
∵∠GKM=45°,
∴∠BAF+∠DAE=90°﹣45°=45°,
作∠QAE=45°交CD的延长线于Q,
则∠QAD+∠DAE=45°,
∴∠QAD=∠FAB,
∵∠B=∠ADQ=90°,
∴△ABF∽△AQD,
∴ ,
∴ ,
∴AQ= ,
在Rt△ADQ中,DQ= = ,
过点E作EP⊥AQ于P,
∵∠QAE=45°,
∴△AEP是等腰直角三角形,
设GH=AE=x,则AP=EP= AE= x,
∵tan∠Q= = ,
∴ = ,
解得x=3 ,
所以GH=3 .
故答案为:3 .
过点A作AE∥GH交CD于E,作AF∥MN交BC于F,于是得到AF=MN=3 ,AE=GH,由于∠GKM=45°,得到∠BAF+∠DAE=90°﹣45°=45°,作∠QAE=45°交CD的延长线于Q,推出∠QAD+∠DAE=45°,通过△ABF≌△AQD,根据相似三角形的性质得到 ,求得AQ= ,在Rt△ADQ中,由勾股定理得到DQ= = ,过点E作EP⊥AQ于P,得到△AEP是等腰直角三角形,设GH=AE=x,则AP=EP= AE= ,然后利用∠Q的正切值列出方程求解即可.
科目:初中数学 来源: 题型:
【题目】如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.
(1)如图1,若点F与点A重合,求证:AC=BC;
(2)若∠DAF=∠DBA,
①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;
②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是( )
A. 被调查的学生有200人
B. 被调查的学生中喜欢教师职业的有40人
C. 被调查的学生中喜欢其他职业的占40%
D. 扇形图中,公务员部分所对应的圆心角为72°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,将一副直角三角板的顶点叠合在一起,记为点O(∠C=30°,∠A=45°).
(1)当∠AOC=45°时,求∠DOB的度数;
(2)请探究∠AOC和∠DOB之间满足的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某村计划对总长为1800m的道路进行改造,安排甲、乙两个工程队完成已知甲队每天能完成的道路长度是乙队每天能完成的2倍,并且在独立完成长为400m的道路时,甲队比乙队少用4天.
求甲、乙两工程队每天能完成道路的长度分别是多少m?
若村委每天需付给甲队的道路改造费用为万元,乙队为万元,要使这次的道路改造费用不超过8万元,至少应安排甲队工作多少天?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com