【题目】中,、分别是边与的中点,,下面四个结论:①;②;③的面积与的面积之比为;④的周长与的周长之比为;其中正确的有________.(只填序号)
【答案】①②③
【解析】
根据题意做出图形,点D、E分别是AB、AC的中点,可得DE∥BC,DE=BC=2,则可证得△ADE∽△ABC,由相似三角形面积比等于相似比的平方,证得△ADE的面积与△ABC的面积之比为 1:4,然后由三角形的周长比等于相似比,证得△ADE的周长与△ABC的周长之比为 1:2,选出正确的结论即可.
如图,∵在△ABC中,D、E分别是AB、AC的中点,
∴DE∥BC,DE=BC=2,
∴△ADE∽△ABC,
故①②正确;
∵△ADE∽△ABC,,
∴△ADE的面积与△ABC的面积之比为 1:4,
△ADE的周长与△ABC的周长之比为 1:2,
故③正确,④错误,
故答案为:①②③.
科目:初中数学 来源: 题型:
【题目】已知等腰三角形△ABC,BC边上的高恰好等于BC边长的一半,则∠BAC的度数是( )
A.75°B.90°或75°C.90°或 75°或15°D.75°或15°或60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.
(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=________,x3=________;
(2)拓展:用“转化”思想求方程=x的解;
(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O,若∠1=38°,则∠BDE的度数为( )
A. 71° B. 76° C. 78° D. 80°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点是线段上的动点(点与不重合),分别以为边向线段的同一侧作正和正.
(1)请你判断与有怎样的数量关系?请说明理由;
(2)连接,相交于点,设,那么的大小是否会随点的移动而变化?请说明理由;
(3)如图2,若点固定,将绕点按顺时针方向旋转(旋转角小于),此时的大小是否发生变化?(只需直接写出你的猜想,不必证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度都为1cm/s.当点P到达点B时,P,Q两点停止运动,设点P的运动时间为t(s).
(1)当t为何值时,△PBQ是直角三角形?
(2)连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的对称轴为,与轴的一个交点在和之间,其部分图象如图所示,则下列结论:
;;点、、是该抛物线上的点,则;;(为任意实数).
其中正确结论的个数是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com