精英家教网 > 初中数学 > 题目详情
16.如图1,在?ABCD中,点E是BC边的中点,连接AE并延长,交DC的延长线于点F.且∠AEC=2∠ABE.连接BF、AC.
(1)求证:四边形ABFC的是矩形;
(2)在图1中,若点M是BF上一点,沿AM折叠△ABM,使点B恰好落在线段DF上的点B′处(如图2),AB=13,AC=12,求MF的长.

分析 (1)由△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEC等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形;
(2)由四边形ABFC是矩形,AB=13,AC=12,得到CF=AB=13,BF=AC=12,∠ACF=∠MFB′=90°,根据折叠的性质得到ABAB=13,B′M=BM,解直角三角形得到结果.

解答 证明:(1)∵四边形ABCD为平行四边形,
∴AB∥DC,
∴∠ABE=∠ECF,
又∵E为BC的中点,
∴BE=CE,
在△ABE和△FCE中,
$\left\{\begin{array}{l}{∠ABE=∠ECF}\\{BE=CE}\\{∠AEB=∠FEC}\end{array}\right.$,
∴△ABE≌△FCE(ASA);
∴AB=CF,
又∵四边形ABCD为平行四边形,
∴AB∥CF,
∴四边形ABFC为平行四边形,
∴BE=EC,AE=EF,
又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,
∴∠AEC=∠ABC+∠EAB,
∴∠ABC=∠EAB,
∴AE=BE,
∴AE+EF=BE+EC,即AF=BC,
则四边形ABFC为矩形;

(2)∵四边形ABFC是矩形,AB=13,AC=12,
∴CF=AB=13,BF=AC=12,∠ACF=∠MFB′=90°,
∵△AB′M是由△ABM折叠得到的,
∴ABAB=13,B′M=BM,
∴B′C=$\sqrt{{AB′}^{2}{-AC}^{2}}$=$\sqrt{{13}^{2}{-12}^{2}}$=5,
∴B′F=CF=B′C=13-5=8,
设MF=x,则B′M=BM=12-x,
∴B′F2+MF2=B′M2
即:82+x2=(12-x)2
解得:x=$\frac{10}{3}$,
∴MF=$\frac{10}{3}$.

点评 此题考查了矩形的判定,平行四边形的性质,三角形的外角性质,等腰三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.若x轴上的P点到y轴距离为3,则P点的坐标为(3,0)或(-3,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2$\sqrt{5}$.
(1)求点D的坐标,并直接写出t的取值范围.
(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:($\frac{1}{2}$)-2-$\sqrt{16}$+($\sqrt{3}$-6)0-$\frac{\sqrt{2}}{cos45°}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.四边形的外角和是360°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.已知$\sqrt{a-2}$+|b+3|=0,则P(-a,-b)的坐标为(  )
A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.若点A在第二象限,且到x轴的距离为2,到y轴的距离为3,则点A的坐标为(  )
A.(-3,2)B.(3,-2)C.(-2,3)D.(2,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,正方形ABCD中,点E在边AB上,且BE=$\sqrt{2}$,AE=3BE,点P在线段AC上的运动,则PE+PB的最小值为5$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.
(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC.

查看答案和解析>>

同步练习册答案