【题目】如图,已知AB=12,点C,D在AB上,且AC=DB=2,点P从点C沿线段CD向点D运动(运动到点D停止),以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,下列说法中正确的有( )
①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;
③EF的中点G移动的路径长为4;④△EFP的面积的最小值为8.
A. 1个 B. 2个 C. 3个 D. 4个
【答案】B
【解析】试题解析:如图,分别延长AE、BF交于点H.
∵等腰Rt△APE和等腰Rt△PBF,
∴, .
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也为PH中点,
即在P的运动过程中,G始终为PH的中点,
∴G的运行轨迹为△HCD的中位线MN.
∵CD=1222=8,
∴MN=4,即G的移动路径长为4.
故③EF的中点G移动的路径长为4,正确;
∵G为EF的中点,
∴①△EFP的外接圆的圆心为点G,正确.
∴①③正确.
∵点P从点C沿线段CD向点D运动(运动到点D停止),易证 所以四边形面积便是三个直角三角形的面积和,设cp=x,则四边形面积
∴AP不断增大,
∴四边形的面积S也会随之变化,故②错误.
④等腰Rt△APE和等腰Rt△PBF,
当AP=AC=2时,即
S△PEF最小,故④错误;
故选B.
科目:初中数学 来源: 题型:
【题目】(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是______.
(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点.求的度数.(用,的代数式表示)
(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出_____.(用,的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且∠PAE=∠E,PE交CD于点F.
(1)求证:PC=PE;
(2)求∠CPE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着手机普及率的提高,有些人开始过分依赖手机,一天中使用手机时间过长而形成了“手机瘾”,某校学生会为了了解本校初三年级的手机使用情况,随机调查了部分学生的手机使用时间,将调查结果分成五类:
A、基本不用;B、平均每天使用1~2h;C、平均每天使用2~4h;D、平均每天使用4~6h;E、平均每天使用超过6h,并根据统计结果绘制成了如下两幅不完整的统计图.
(1)学生会一共调查了多少名学生?
(2)此次调查的学生中属于E类的学生有 人,并补全条形统计图;
(3)若一天中手机使用时间超过6h,则患有严重的“手机瘾”,该校初三学生共有900人,请估计该校初三年级中患有严重的“手机瘾”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,若MN=2,则NF=___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点的坐标为(0,4),线段的位置如图所示,其中点的坐标为(,),点的坐标为(3,).
(1)将线段平移得到线段,其中点的对应点为,点的对应点为点.
①点平移到点的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;
②点的坐标为 .
(2)在(1)的条件下,若点的坐标为(4,0),连接,画出图形并求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若,是.
理由:如图,过点作,
则.(依据)
因为,
所以,
所以.
所以.
(1)上述证明过程中的依据是指 .
(2)若将点移至图2所示的位置,,此时之间有什么关系?请说明理由.
(3)在图中,,与又有何关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1在平面直角坐标系中.等腰Rt△OAB的斜边OA在x轴上.P为线段OB上﹣动点(不与O,B重合).过P点向x轴作垂线.垂足为C.以PC为边在PC的右侧作正方形PCDM.OP=t,OA=3.设过O,M两点的抛物线为y=ax2+bx.其顶点N(m,n)
(1)写出t的取值范围 ,写出M的坐标:( , );
(2)用含a,t的代数式表示b;
(3)当抛物线开向下,且点M恰好运动到AB边上时(如图2)
①求t的值;
②若N在△OAB的内部及边上,试求a及m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.
结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.
(1)求这个函数的表达式;
(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;
(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b≥的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com