精英家教网 > 初中数学 > 题目详情

【题目】如图,边长为1的正方形OABC绕着点O逆时针旋转30°得到正方形ODEF,连接AF,求的周长.

【答案】2+

【解析】

BCED的交点为G,连结OGAF与点H,延长OGBE与点M.首先依据HL可证明RtOCGRtODG,则CDCG,∠COG=∠DOG,于是可得到BGEGOH为∠AOF的平分线,则AHFH,然后利用特殊锐角三角函数值可求得AH的长,从而可求得AF的长,从而可求得的周长.

BCED的交点为G,连结OGAF与点H

∵∠D=∠C90°,

∴△OCG和△ODG均为直角三角形.

又∵

RtOCGRtODG

DGCG,∠COG=∠DOG

BGEG

又∵∠AOD=∠FOC

∴∠FOH=∠AOHAOF60°.

又∵OAOF

AHFHAOsin60°=1×=

AF2AH=

的周长=AO+FO+AF=1+1+=2+.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).

(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 

(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2ABC位似,且位似比为2:1,点C2的坐标是   

(3)A2B2C2的面积是   平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且,过点DDEBC,垂足为E.

(1)求证:CD平分∠ACE;

(2)判断直线ED与⊙O的位置关系,并说明理由;

(3)求线段CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=-x-3x轴于点A,交y轴于点B,点Px轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在Rt中,,点是斜边的中点,,且于点,联结

1)求证:

2)当时,求的值;

3)在(2)的条件下,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△中,是边上的中线,于点交于点.

(1)求证:

(2)过点的延长线于点.求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,网格中每个小正方形的边长为1,点AB均在格点上.则线段AB的长为 .请借助网格,仅用无刻度的直尺在AB上作出点P,使AP.

2)⊙O为△ABC的外接圆,请仅用无刻度的直尺,依下列条件分别在图2,图3的圆中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法,请下结论注明你所画的弦).

①如图2ACBC

②如图3P为圆上一点,直线lOPlBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)已知:ABCD的两边ABAD的长是关于x的方程的两个实数根.

1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;

2)若AB的长为2,那么ABCD的周长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=BC=2,ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1BAC于点E,A1C1分别交AC、BCD、F两点.

(1)如图1,观察并猜想,在旋转过程中,线段BEBF有怎样的数量关系?并证明你的结论;

(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.

查看答案和解析>>

同步练习册答案