【题目】如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB、FC.
(1)求证:FB=FC;
(2)求证:FB2=FAFD;
【答案】(1)证明见解析(2)证明见解析
【解析】试题分析:(1)根据角平分线的性质,得两角相等,然后根据园内接四边形得到四边形的一个外角等于不相邻的一个内角,得到两个角相等,根据同弧所对的圆周角相等和对顶角相等,得到∠FBC=∠ACB,进而根据等角对等边得证;
(2)根据两个三角形对应角相等,得到两三角形相似,根据相似三角形的对应边相等得到对应边成比例,从而得到乘积式得证.
试题解析:(Ⅰ)∵AD平分∠EAC,
∴∠EAD=∠DAC.
∵四边形AFBC内接于圆,
∴∠DAC=∠FBC.
∵∠EAD=∠FAB=∠FCB,
∴∠FBC=∠FCB,
∴FB=FC.
(Ⅱ)∵∠FAB=∠FCB=∠FBC,∠AFB=∠BFD,
∴△FBA∽△FDB
∴,
∴FB2=FAFD.
科目:初中数学 来源: 题型:
【题目】2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+6与x轴、y轴分别交于点E,F,点E的坐标为(﹣8,0),点A的坐标为(﹣6,0)
(1)求k的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;
(3)在(2)的条件下,探究:当点P运动到什么位置时,△OPA的面积为,并说明理由;
(4)问在x轴上是否存在点Q,使得△EFQ为等腰三角形?若存在,求出符合条件的Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)(问题解决)已知点在内,过点分别作关于、的对称点、.
①如图1,若,请直接写出______;
②如图2,连接分别交、于、,若,求的度数;
③在②的条件下,若度(),请直接写出______度(用含的代数式表示).
(2)(拓展延伸)利用“有一个角是的等腰三角形是等边三角形”这个结论,解答问题:如图3,在中,,点是内部一定点,,点、分别在边、上,请你在图3中画出使周长最小的点、的位置(不写画法),并直接写出周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,函数y=(k>0,x>0)的图象与直线y=2x﹣2交于点Q(2,m).
(1)求m,k的值;
(2)已知点P(a,0)(a>0)是x轴上一动点,过点P作平行于y轴的直线,交直线y=2x﹣2于点M,交函数y=的图象于点N.
①当a=4时,求MN的长;
②若PM>PN,结合图象,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中的所走路程s(米)与时间t(分)之间的关系.
(1)学校离他家 米,从出发到学校,王老师共用了 分钟;王老师吃早餐用了 分钟?
(2)观察图形直接回答王老师吃早餐以前的速度快还是吃完早餐以后的速度快?
(3)求出王老师吃完早餐后的平均速度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点C在AOB的一边OA上,过点C的直线DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度数;
(2)求证:CG平分OCD;
(3)当O为多少度时,CD平分OCF,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com