精英家教网 > 初中数学 > 题目详情
16.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度数.

分析 由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=$\frac{1}{2}$∠BAC,故∠EAD=∠EAC-∠DAC.

解答 解:∵∠B=42°,∠C=70°,
∴∠BAC=180°-∠B-∠C=68°,
∵AE是角平分线,
∴∠EAC=$\frac{1}{2}$∠BAC=34°.
∵AD是高,∠C=70°,
∴∠DAC=90°-∠C=20°,
∴∠EAD=∠EAC-∠DAC=34°-20°=14°,
∠AEC=90°-14°=76°.

点评 本题考查三角形的内角和定理及角平分线的性质,高线的性质,解答的关键是熟练掌握三角形的内角和定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.二次函数y=ax2+bx+c的图象如图所示,则化简二次根式$\sqrt{(a+c)^{2}}$+$\sqrt{(b-c)^{2}}$的结果是(  )
A.a+bB.-a-bC.2b-cD.-2b+c

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在△ABC中,∠C=90°,∠CAD=∠BAD,DE⊥AB于E,点F在边AC上,连接
DF.
(1)求证:AC=AE;
(2)若AC=8,AB=10,求DE的长;
(3)若CF=BE,直接写出线段AB,AF,EB的数量关系:AB=AF+2EB.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.化简(a-1)•$\sqrt{\frac{1}{1-a}}$的结果是(  )
A.-$\sqrt{1-a}$B.$\sqrt{1-a}$C.-$\sqrt{a-1}$D.$\sqrt{a-1}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(a-b)2=(a+b)2-4ab(化为a、b两数和与积的形式)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(-4,0),把△AOB平移,使点A移至点D(2,1),点O、B的对应点分别是点E、F.
(1)请在图中画出△DEF,并写出点E,F的坐标.
(2)点P(-1,1)在△AOB内,当△AOB平移到△DEF位置时,求点P的对应点P′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.不等式组$\left\{\begin{array}{l}x-1>0\\ x+2≥2x-1\end{array}\right.$的解集是1<x≤3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.3a2•2a3=6a5

查看答案和解析>>

同步练习册答案